Skip to main content

Imaging and Quantification of P-Smad1/5 in Zebrafish Blastula and Gastrula Embryos

  • Protocol
  • First Online:
Bone Morphogenetic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1891))

Abstract

Spatiotemporal patterns of morphogen activity drive differential gene expression with a high degree of precision within a developing embryo and reproducibly between embryos. Understanding the formation and function of a morphogen gradient during development requires quantitative measurement of morphogen activity throughout an individual embryo and also between embryos within a population. Quantification of morphogen gradients in to presents unique challenges in imaging and image processing to minimize error and maximize the quality of the data so it may be used in computational models of development and in statistically testing hypotheses. Here we present methods for the preparation, immunostaining, imaging, and quantification of a bone morphogenetic protein (BMP) activity gradient in individual zebrafish embryos as well as methods for acquiring population-level statistics after embryo grouping and alignment. This quantitative approach can be extended to other morphogen systems, and the computational codes can be adapted to other imaging contexts in zebrafish and other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gregor T, Wieschaus EF, McGregor AP, Bialek W, Tank DW (2007) Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130(1):141–152

    Article  CAS  Google Scholar 

  2. Teleman AA, Cohen SM (2000) Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103(6):971–980

    Article  CAS  Google Scholar 

  3. Coppey M, Boettiger AN, Berezhkovskii AM, Shvartsman SY (2008) Nuclear trapping shapes the terminal gradient in the Drosophila embryo. Curr Biol 18:915–919

    Article  CAS  Google Scholar 

  4. Gregor T, Tank DW, Wieschaus EF, Bialek W (2007) Probing the limits to positional information. Cell 130(1):153–164

    Article  CAS  Google Scholar 

  5. Reeves GT, Trisnadi N, Truong TV, Nahmad M, Katz S, Stathopoulos A (2012) Dorsal-ventral gene expression in the Drosophila embryo reflects the dynamics and precision of the dorsal nuclear gradient. Dev Cell 22(3):544–557. https://doi.org/10.1016/j.devcel.2011.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov KN, Manu ME, Vanario-Alonso CE, Samsonova M, Sharp DH, Reinitz J (2004) Dynamic control of positional information in the early Drosophila embryo. Nature 430(6997):368–371. https://doi.org/10.1038/nature02678

    Article  CAS  PubMed  Google Scholar 

  7. Umulis DM, Shimmi O, O’Connor MB, Othmer HG (2010) Organism-scale modeling of early Drosophila patterning via bone morphogenetic proteins. Dev Cell 18(2):260–274. https://doi.org/10.1016/j.devcel.2010.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanodia JS, Rikhy R, Kim Y, Lund VK, DeLotto R, Lippincott-Schwartz J, Shvartsman SY (2009) Dynamics of the Dorsal morphogen gradient. Proc Natl Acad Sci U S A 106(51):21707–21712. https://doi.org/10.1073/pnas.0912395106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tuazon FB, Mullins MC (2015) Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 42:118–133. https://doi.org/10.1016/j.semcdb.2015.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dubrulle J, Jordan BM, Akhmetova L, Farrell JA, Kim SH, Solnica-Krezel L, Schier AF (2015) Response to Nodal morphogen gradient is determined by the kinetics of target gene induction. Elife 4:e05042. https://doi.org/10.7554/eLife.05042

    Article  CAS  PubMed Central  Google Scholar 

  11. Muller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF (2012) Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336(6082):721–724. https://doi.org/10.1126/science.1221920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harvey SA, Smith JC (2009) Visualisation and quantification of morphogen gradient formation in the zebrafish. PLoS Biol 7(5):e1000101. https://doi.org/10.1371/journal.pbio.1000101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Boxtel AL, Chesebro JE, Heliot C, Ramel MC, Stone RK, Hill CS (2015) A temporal window for signal activation dictates the dimensions of a nodal signaling domain. Dev Cell 35(2):175–185. https://doi.org/10.1016/j.devcel.2015.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shimozono S, Iimura T, Kitaguchi T, Higashijima S, Miyawaki A (2013) Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496(7445):363–366. https://doi.org/10.1038/nature12037

    Article  CAS  PubMed  Google Scholar 

  15. Sosnik J, Zheng L, Rackauckas CV, Digman M, Gratton E, Nie Q, Schilling TF (2016) Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain. Elife 5:e14034. https://doi.org/10.7554/eLife.14034

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shimmi O, Umulis D, Othmer H, O’Connor MB (2005) Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Cell 120(6):873–886. https://doi.org/10.1016/j.cell.2005.02.009

    Article  CAS  PubMed  Google Scholar 

  17. Bollenbach T, Pantazis P, Kicheva A, Bokel C, Gonzalez-Gaitan M, Julicher F (2008) Precision of the Dpp gradient. Development 135(6):1137–1146. https://doi.org/10.1242/dev.012062

    Article  CAS  PubMed  Google Scholar 

  18. Gavin-Smyth J, Wang YC, Butler I, Ferguson EL (2013) A genetic network conferring canalization to a bistable patterning system in Drosophila. Curr Biol 23(22):2296–2302. https://doi.org/10.1016/j.cub.2013.09.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tucker JA, Mintzer KA, Mullins MC (2008) The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev Cell 14(1):108–119. https://doi.org/10.1016/j.devcel.2007.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hashiguchi M, Mullins MC (2013) Anteroposterior and dorsoventral patterning are coordinated by an identical patterning clock. Development 140(9):1970–1980. https://doi.org/10.1242/dev.088104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Diaspro A, Federici F, Robello M (2002) Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy. Appl Opt 41(4):685–690

    Article  Google Scholar 

  22. Azaripour A, Lagerweij T, Scharfbillig C, Jadczak AE, Willershausen B, Van Noorden CJ (2016) A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog Histochem Cytochem 51(2):9–23. https://doi.org/10.1016/j.proghi.2016.04.001

    Article  PubMed  Google Scholar 

  23. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322(5904):1065–1069. https://doi.org/10.1126/science.1162493

    Article  CAS  PubMed  Google Scholar 

  24. Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 99(RapidPosts)

    Google Scholar 

  25. Myronenko A, Song X, Carreira-Perpinan MA (2007) Non-rigid point set registration: coherent point drift. Adv Neural Inf Proces Syst 19:1009–1016

    Google Scholar 

  26. Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29(1):52, 54

    Article  Google Scholar 

  27. Smith SM, Maughan PJ (2015) SNP genotyping using KASPar assays. Methods Mol Biol 1245:243–256. https://doi.org/10.1007/978-1-4939-1966-6_18

    Article  CAS  PubMed  Google Scholar 

  28. Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14(3):387–392

    Article  CAS  Google Scholar 

  29. Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by grant NIH R01GM056326 and NIH R01HD073156.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mary Mullins or David Umulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zinski, J., Tuazon, F., Huang, Y., Mullins, M., Umulis, D. (2019). Imaging and Quantification of P-Smad1/5 in Zebrafish Blastula and Gastrula Embryos. In: Rogers, M. (eds) Bone Morphogenetic Proteins. Methods in Molecular Biology, vol 1891. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8904-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8904-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8903-4

  • Online ISBN: 978-1-4939-8904-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics