Skip to main content

Structural Studies of Selective Autophagy in Yeast

  • Protocol
  • First Online:
Autophagy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1880))

Abstract

Budding yeast has been utilized as a model system for studying basic mechanisms of autophagy. The cytoplasm-to-vacuole targeting (Cvt) pathway, which delivers some vacuolar enzymes into the vacuole selectively and constitutively, is one of the most characterized examples of selective autophagy in budding yeast. Here we summarize the methods of X-ray crystallography, NMR, and other biophysical analyses to study the structural basis of the Cvt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  Google Scholar 

  2. Lynch-Day MA, Klionsky DJ (2010) The Cvt pathway as a model for selective autophagy. FEBS Lett 584:1359–1366

    Article  CAS  Google Scholar 

  3. Scott SV, Guan J, Hutchins MU, Kim J, Klionsky DJ (2001) Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol Cell 7:1131–1141

    Article  CAS  Google Scholar 

  4. Leber R, Silles E, Sandoval IV, Mazon MJ (2001) Yol082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole. J Biol Chem 276:29210–29217

    Article  CAS  Google Scholar 

  5. Shintani T, Huang WP, Stromhaug PE, Klionsky DJ (2002) Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell 3:825–837

    Article  CAS  Google Scholar 

  6. Suzuki K, Kamada Y, Ohsumi Y (2002) Studies of cargo delivery to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae. Dev Cell 3:815–824

    Article  CAS  Google Scholar 

  7. Noda NN et al (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211–1218

    Article  CAS  Google Scholar 

  8. Watanabe Y, Noda NN, Kumeta H, Suzuki K, Ohsumi Y, Inagaki F (2010) Selective transport of alpha-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34. J Biol Chem 285:30026–30033

    Article  CAS  Google Scholar 

  9. Yorimitsu T, Klionsky DJ (2005) Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 16:1593–1605

    Article  CAS  Google Scholar 

  10. Suzuki K, Kondo C, Morimoto M, Ohsumi Y (2010) Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p. J Biol Chem 285:30019–30025

    Article  CAS  Google Scholar 

  11. Shintani T, Klionsky DJ (2004) Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem 279:29889–29894

    Article  CAS  Google Scholar 

  12. Oda MN, Scott SV, Hefner-Gravink A, Caffarelli AD, Klionsky DJ (1996) Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I. J Cell Biol 132:999–1010

    Article  CAS  Google Scholar 

  13. Yamasaki A et al (2016) Structural basis for receptor-mediated selective autophagy of aminopeptidase I aggregates. Cell Rep 16:19–27

    Article  CAS  Google Scholar 

  14. Bertipaglia C et al (2016) Higher-order assemblies of oligomeric cargo receptor complexes form the membrane scaffold of the Cvt vesicle. EMBO Rep 17:1044–1060

    Article  CAS  Google Scholar 

  15. Su MY et al (2015) Structure of yeast Ape1 and its role in autophagic vesicle formation. Autophagy 11:1580–1593

    Article  CAS  Google Scholar 

  16. Yamasaki A, Noda NN (2017) Structural biology of the Cvt pathway. J Mol Biol 429:531–542

    Article  CAS  Google Scholar 

  17. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  Google Scholar 

  18. Guntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378

    CAS  PubMed  Google Scholar 

  19. Adachi W, Suzuki NN, Fujioka Y, Suzuki K, Ohsumi Y, Inagaki F (2007) Crystallization of Saccharomyces cerevisiae aminopeptidase 1, the major cargo protein of the Cvt pathway. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:200–203

    Article  CAS  Google Scholar 

  20. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  21. Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66:125–132

    Article  CAS  Google Scholar 

  22. Adams PD et al (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  Google Scholar 

  23. Pape T, Schneider TR (2004) HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J Appl Crystallogr 37:843–844

    Article  CAS  Google Scholar 

  24. Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr 66:479–485

    Article  CAS  Google Scholar 

  25. Brunger AT et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  CAS  Google Scholar 

  26. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Japan Society for the Promotion of Sciences KAKENHI [grant numbers 25111001, 25111004 to N.N.N., 17K18339 to A.Y.], CREST, Japan Science and Technology Agency [grant number JPMJCR13M7 to N.N.N.], and The Naito Foundation [to N.N.N.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo N. Noda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yamasaki, A., Watanabe, Y., Noda, N.N. (2019). Structural Studies of Selective Autophagy in Yeast. In: Ktistakis, N., Florey, O. (eds) Autophagy. Methods in Molecular Biology, vol 1880. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8873-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8873-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8872-3

  • Online ISBN: 978-1-4939-8873-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics