Autophagy pp 455-477 | Cite as

MHC Class I Internalization via Autophagy Proteins

  • Monica Loi
  • Laure-Anne Ligeon
  • Christian MünzEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1880)


Macroautophagy is a ubiquitous degradative pathway involved in innate and adaptive immunity. Its molecular machinery has been described to deliver intracellular and extracellular antigens to MHC class II loading compartment by regulating autophagosome and phagosome maturation. We recently found that the respective Atg proteins can contribute to MHC class I-restricted antigen presentation to CD8+ T cells by regulating MHC class I surface levels in mouse dendritic cell. Indeed, we determined that MHC class I molecules are stabilized on the cell surface of murine antigen presenting cells deficient for core components of the macroautophagy machinery such as Atg5 and Atg7. This stabilization seems to result from defective internalization of MHC class I molecules dependent on adaptor protein kinase 1 (AAK1), involved in clathrin-mediated endocytosis. Moreover, macroautophagy-dependent stabilization of MHC class I molecules leads to enhanced CD8+ T cell priming during influenza A virus infection in vivo, resulting in decreased pathology. In this chapter, we describe four experiments to monitor, characterize, and quantify the effect of macroautophagy deficiency on MHC class I molecule trafficking and the subsequent CD8+ T cell priming. First, we will show how to monitor MHC class I internalization in lung CD11c+ cells from mice lacking key components of the macroautophagy machinery. Then, we will propose a method to characterize the interaction between either MHC class I or Atg8/LC3 with AAK1. Finally, we will describe how to evaluate the influenza A-specific CD8+ T cell response in mice conditionally depleted for Atg5 in their DC compartment. This set of experiments allows to characterize MHC class I internalization with the help of the molecular machinery of macroautophagy.

Key words

MHC class I Autophagy Atg5 Atg7 Dendritic cells 


  1. 1.
    Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132CrossRefGoogle Scholar
  2. 2.
    Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2:211–216CrossRefGoogle Scholar
  3. 3.
    Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Müller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee RG, Stevanovic S (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. PNAS 102(22):7922–7927CrossRefGoogle Scholar
  4. 4.
    Schmid D, Pypaert M, Münz C (2007) Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26:79–92CrossRefGoogle Scholar
  5. 5.
    Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervonsky A, Mizushima N, Grinstein S, Iwasaki A (2010) In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32:227–239CrossRefGoogle Scholar
  6. 6.
    Li Y, Wang LX, Yang G, Hoa F, Ubra WJ, Hu HM (2008) Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res 68:6889–6895CrossRefGoogle Scholar
  7. 7.
    Aichinger M, Wu C, Nedjic J, Klein L (2013) Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J Exp Med 210(2):287–300CrossRefGoogle Scholar
  8. 8.
    Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L (2008) Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455:396–400CrossRefGoogle Scholar
  9. 9.
    Romao S, Gasser N, Becker AC, Guhl B, Bajagic M, Vanoaica D, Ziegler U, Roesler J, Dengjel J, Reichenbach J, Münz C (2013) Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. J Cell Biol 203:757–766CrossRefGoogle Scholar
  10. 10.
    Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, Green DR (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–1257CrossRefGoogle Scholar
  11. 11.
    Martinez J, Malireddi RK, Lu Q, Cunha LD, Pelletier S, Gingras S, Orchard R, Guan JL, Tan H, Peng J, Kanneganti TD, Virgin HW, Green DR (2015) Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 17:893–906CrossRefGoogle Scholar
  12. 12.
    Loi M, Müller A, Steinbach K, Barreira da Silva R, Paul P, Ligeon L-A, Caruso A, Albercht RA, Becker AC, Annaheim N, Nowag H, Dengjel J, Garcia-Saster A, Merkler D, Münz C, Gannagé M (2016) Macroautophagy proteins control MHC class I levels on dendritic cells and shape anti-viral CD8+ T cells responses. Cell Rep 15(5):1076–1087CrossRefGoogle Scholar
  13. 13.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889CrossRefGoogle Scholar
  14. 14.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884CrossRefGoogle Scholar
  15. 15.
    Lutz MB, Rössner S (2007) Factors influencing the generation of murine dendritic cells from bone marrow: the special role of fetal calf serum. Immunobiology 212(9–10):855–862PubMedGoogle Scholar
  16. 16.
    Helft J, Böttcher J, Chakravarty P, Zelenay S, Huotari J, Schraml BU, Goubau D, Reis e Sousa C (2015) GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCII+ macrophages and dendritic cells. Immunity 42(6):1197–1211CrossRefGoogle Scholar
  17. 17.
    Miller MA, Stabenow JM, Parvathareddy J, Wodowski AJ, Fabrizio TP, Bina XR, Zalduondo L, Bina JE (2012) Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia. PLoS One 7(2):e31359CrossRefGoogle Scholar
  18. 18.
    Rosseels V, Nazé F, De Craeye S, Francart A, Kalai M, Van Gucht S (2011) A non-invasive intranasal inoculation technique using isoflurane anesthesia to infect the brain of mice with rabies virus. J Virol Methods 173(1):127–136CrossRefGoogle Scholar
  19. 19.
    Southam DS, Dolovich M, O'Byrne PM, Inman MD (2002) Distribution of intranasal instillations in mice: effects of volume, time, body position, and anesthesia. Am J Physiol Lung Cell Mol Physiol 282(4):L833–L839CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Monica Loi
    • 1
  • Laure-Anne Ligeon
    • 1
  • Christian Münz
    • 1
    Email author
  1. 1.Viral ImmunobiologyInstitute of Experimental Immunology, University of ZürichZürichSwitzerland

Personalised recommendations