Skip to main content

Recombinant Expression, Purification, and Assembly of p62 Filaments

  • Protocol
  • First Online:
Autophagy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1880))

Abstract

This chapter describes the recombinant overexpression of the canonical selective autophagy receptor p62/SQSTM1 in E. coli and affinity purification. Also described is the method to induce p62 filament assembly and their visualization by negative stain electron microscopy (EM). In cells, p62 forms large structures termed p62 bodies and has been shown to be aggregation prone. This tendency to aggregate poses problems for expression and purification in vitro, which is a prerequisite for structural analysis. Here, we describe the method to express and purify soluble p62, using the solubility tag, MBP, in conjunction with autoinduction. Furthermore, we describe the protocol to assemble p62 into filaments by controlling the ionic strength of its buffer, as well as the preparation of negative stain EM grids to visualize the filaments. In vitro formed p62 filaments can be used to study receptor cargo interactions in minimal reconstituted autophagy model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamark T, Perander M, Outzen H, Kristiansen K, Øvervatn A, Michaelsen E, Bjørkøy G, Johansen T (2003) Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 278:34568–34581

    Article  CAS  Google Scholar 

  2. Jain A, Lamark T, Sjøttem E, Larsen KB, Awuh JA, Øvervatn A, McMahon M, Hayes JD, Johansen T (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285:22576–22591

    Article  CAS  Google Scholar 

  3. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  Google Scholar 

  4. Long J, Garner TP, Pandya MJ, Craven CJ, Chen P, Shaw B, Williamson MP, Layfield R, Searle MS (2010) Dimerisation of the UBA domain of p62 inhibits ubiquitin binding and regulates NF-kappaB signalling. J Mol Biol 396:178–194

    Article  CAS  Google Scholar 

  5. Moscat J, Diaz-Meco MT (2009) p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137:1001–1004

    Article  CAS  Google Scholar 

  6. Wilson MI, Gill DJ, Perisic O, Quinn MT, Williams RL (2003) PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62. Mol Cell 12:39–50

    Article  CAS  Google Scholar 

  7. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7(3):279–296

    Article  CAS  Google Scholar 

  8. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  Google Scholar 

  9. Johansen T, Sachse C (2015) The higher-order molecular organization of p62/SQSTM1. Oncotarget 6:16796–16797

    Article  Google Scholar 

  10. Kuusisto E, Salminen A, Alafuzoff I (2001) Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12:2085–2090

    Article  CAS  Google Scholar 

  11. Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L et al (2002) p62 is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160:255–263

    Article  CAS  Google Scholar 

  12. Paine MG, Babu JR, Seibenhener ML, Wooten MW (2005) Evidence for p62 aggregate formation: role in cell survival. FEBS Lett 579:5029–5034

    Article  CAS  Google Scholar 

  13. Ciuffa R, Lamark T, Tarafder AK, Guesdon A, Rybina S, Hagen WJH, Johansen T, Sachse C (2015) The selective autophagy receptor p62 forms a flexible filamentous helical scaffold. Cell Rep 11:748–758

    Article  CAS  Google Scholar 

  14. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance by the EMBL’s Protein Expression and Purification Core Facility for reagents and Electron Microscopy Core Facility for the instrument support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Sachse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tarafder, A.K., Guesdon, A., Kuhm, T., Sachse, C. (2019). Recombinant Expression, Purification, and Assembly of p62 Filaments. In: Ktistakis, N., Florey, O. (eds) Autophagy. Methods in Molecular Biology, vol 1880. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8873-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8873-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8872-3

  • Online ISBN: 978-1-4939-8873-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics