Skip to main content

Targeted Metabolomics of Xylose-Fermenting Yeasts Based on Mass Spectrometry

  • Protocol
  • First Online:
Microbial Metabolomics

Abstract

Mass spectrometry is a sensitive and selective analytical technique that enables detection and quantitation of low abundance compounds in a complex sample matrix. Targeted metabolomics allows for quantitative analysis of metabolites, providing kinetic information of production and consumption rates, an essential step to investigate microbial metabolism. Here, we describe a targeted metabolomics protocol for yeast samples, from sample preparation to mass spectrometry analysis, which enables the identification of metabolic fluxes after xylose consumption. Sample preparation methods were optimized for quenching of yeast metabolism followed by intracellular metabolite extraction, using cold methanol and boiling ethanol protocols. Ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) methods using ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography (HILIC) allowed for the quantitation of 18 metabolites involved in central carbon metabolism (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle). The protocol here described was successfully applied to quantify metabolites in Scheffersomyces stipitis, Spathaspora passalidarum, Spathaspora arborariae, and Candida tenuis samples after xylose consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ricci-Silva EM, Vaz BG, Vasconcelos AG, Romão W, Aricetti JA, Caldana C, Abdelnur PV (2016) Mass spectrometry for metabolomics and biomass composition analyses. In: Vaz S (ed) Analytical techniques and methods for biomass. Springer, Cham, pp 115–141

    Chapter  Google Scholar 

  2. Vargas LHG, Neto JCR, de Aquino Ribeiro JA et al (2016) Metabolomics analysis of oil palm (Elaeis guineensis) leaf: evaluation of sample preparation steps using UHPLC–MS/MS. Metabolomics. https://doi.org/10.1007/s11306-016-1100-z

  3. Krastanov A (2016) Metabolomics—the state of art metabolomics – the state of art. doi:https://doi.org/10.2478/V10133-010-0001-Y

    Article  CAS  Google Scholar 

  4. Mathew AK, Padmanaban VC (2013) Metabolomics: the apogee of the omics trilogy. Int J Pharm Pharm Sci 5:45–48. https://doi.org/10.1038/nrm3314

    Article  CAS  Google Scholar 

  5. Abdelnur PV, Caldana C, Martins MCM (2014) Metabolomics applied in bioenergy. doi:https://doi.org/10.1186/s40538-014-0022-0

  6. Zakhartsev M, Vielhauer O, Horn T, et al (2015) Fast sampling for quantitative microbial metabolomics: new aspects on cold methanol quenching: metabolite co-precipitation. 286–301. doi:https://doi.org/10.1007/s11306-014-0700-8

    Article  Google Scholar 

  7. Putri SP, Yamamoto S, Tsugawa H, Fukusaki E (2013) Current metabolomics: technological advances. J Biosci Bioeng 116:9–16. https://doi.org/10.1016/j.jbiosc.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  8. Pyke JS, Callahan DL, Kanojia K et al (2015) A tandem liquid chromatography–mass spectrometry (LC–MS) method for profiling small molecules in complex samples. Metabolomics 11:1552–1562. https://doi.org/10.1007/s11306-015-0806-7

    Article  CAS  Google Scholar 

  9. Wamelink MMC, Struys EA, Huck JHJ et al (2005) Quantification of sugar phosphate intermediates of the pentose phosphate pathway by LC–MS/MS: application to two new inherited defects of metabolism. J Chromatogr B Anal Technol Biomed Life Sci 823:18–25. https://doi.org/10.1016/j.jchromb.2005.01.001

    Article  CAS  Google Scholar 

  10. Calderón-Santiago M, Fernández-Peralbo M, Priego-Capote F, Luque de Castro MD (2016) MSCombine: a tool for merging untargeted metabolomic data from high-resolution mass spectrometry in the positive and negative ionization modes. Metabolomics 12:43. https://doi.org/10.1007/s11306-016-0970-4

    Article  CAS  Google Scholar 

  11. Smedsgaard J, Nielsen J (2005) Global metabolite analysis of yeast: evaluation of sample preparation methods. 1155–1169. doi:https://doi.org/10.1002/yea.1308

    Article  Google Scholar 

  12. Buescher JM, Moco S, Sauer U, Zamboni N (2010) Ultrahigh performance liquid chromatography–tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem 82:4403–4412

    Article  CAS  Google Scholar 

  13. Seifar RM, Ras C, Deshmukh AT et al (2013) Quantitative analysis of intracellular coenzymes in Saccharomyces cerevisiae using ion pair reversed phase ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1311:115–120. https://doi.org/10.1016/j.chroma.2013.08.076

    Article  CAS  PubMed  Google Scholar 

  14. Nováková L, Havlíková L, Vlcková H (2014) Hydrophilic interaction chromatography of polar and ionizable compounds by UHPLC. Trends Anal Chem 63:55–64. https://doi.org/10.1016/j.trac.2014.08.004

    Article  CAS  Google Scholar 

  15. Kawachi Y, Ikegami T, Takubo H et al (2011) Chromatographic characterization of hydrophilic interaction liquid chromatography stationary phases: hydrophilicity, charge effects, structural selectivity, and separation efficiency. J Chromatogr A 1218:5903–5919. https://doi.org/10.1016/j.chroma.2011.06.048

    Article  CAS  PubMed  Google Scholar 

  16. Verduyn C, Van Kleef R, Frank J et al (1985) Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J 226:669–677. https://doi.org/10.1042/bj2260669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Brazilian Agricultural Research Corporation (EMBRAPA) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Verardi Abdelnur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Campos, C.G., de Aquino Ribeiro, J.A., de Almeida, J.R.M., Quirino, B.F., Abdelnur, P.V. (2019). Targeted Metabolomics of Xylose-Fermenting Yeasts Based on Mass Spectrometry. In: Baidoo, E. (eds) Microbial Metabolomics. Methods in Molecular Biology, vol 1859. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8757-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8757-3_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8756-6

  • Online ISBN: 978-1-4939-8757-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics