Skip to main content

Use of Liquid Chromatography–Mass Spectrometry-Based Metabolomics to Identify Biomarkers of Tuberculosis

  • Protocol
  • First Online:
Microbial Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1859))

Abstract

Liquid chromatography–mass spectrometry (LC-MS) based metabolomics has proven to be a powerful analytical tool for biomarker screening. Here we describe two workflows which employ untargeted metabolomics to study serum biomarkers in tuberculosis patients. Expression profiles for samples of hydrophilic metabolites and hydrophobic metabolites (lipids) may be obtained by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48(1–2):155–171

    Article  CAS  Google Scholar 

  2. Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269

    Article  CAS  Google Scholar 

  3. Wikoff WR et al (2011) Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J Proteome Res 10(6):2842–2851

    Article  CAS  Google Scholar 

  4. De Vos RC et al (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2(4):778–791

    Article  Google Scholar 

  5. Gertsman I, Gangoiti JA, Barshop BA (2014) Validation of a dual LC-HRMS platform for clinical metabolic diagnosis in serum, bridging quantitative analysis and untargeted metabolomics. Metabolomics 10(2):312–323

    Article  CAS  Google Scholar 

  6. Andersen MB et al (2014) Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J Proteome Res 13(3):1405–1418

    Article  CAS  Google Scholar 

  7. Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5(3):536–549

    Article  CAS  Google Scholar 

  8. Allwood JW et al (2009) Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics 5(4):479–496

    Article  CAS  Google Scholar 

  9. Becker S et al (2012) LC-MS-based metabolomics in the clinical laboratory. J Chromatogr B Analyt Technol Biomed Life Sci 883-884:68–75

    Article  CAS  Google Scholar 

  10. Zhou J, Yin Y (2016) Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry. Analyst 141(23):6362–6373

    Article  CAS  Google Scholar 

  11. Loots DT (2016) TB or not TB? Improving the understanding and diagnosis of tuberculosis through metabolomics. Biomark Med 10(10):1025–1028

    Article  CAS  Google Scholar 

  12. Kumar N, Shreshtha AK, Patra S (2017) The Metabolomic strategy in tuberculosis therapy. Comb Chem High Throughput Screen 20(3):235–246

    Article  CAS  Google Scholar 

  13. Preez ID, Luies L, Loots DT (2017) Metabolomics biomarkers for tuberculosis diagnostics: current status and future objectives. Biomark Med 11(2):179–194

    Article  Google Scholar 

  14. Wang C et al (2017) Metabolomic analysis based on 1H-nuclear magnetic resonance spectroscopy metabolic profiles in tuberculous, malignant and transudative pleural effusion. Mol Med Rep

    Google Scholar 

  15. Zhong L et al (2016) Serum metabolomic study for the detection of candidate biomarkers of tuberculosis. Int J Clin Exp Pathol 9(3):3256–3266

    CAS  Google Scholar 

  16. Xia J et al (2015) MetaboAnalyst 3.0--making metabolomics more meaningful. Nucleic Acids Res 43(W1):W251–W257

    Article  CAS  Google Scholar 

  17. Dunn WB et al (2012) The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis 4(18):2249–2264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (7161007, 81430056, 31420103905, 21305005 and 31400695), the National Key Research and Development Program of China (No. 2016YFA0500302), and the Lam Chung Nin Foundation for Systems Biomedicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhou, J., Yin, Y. (2019). Use of Liquid Chromatography–Mass Spectrometry-Based Metabolomics to Identify Biomarkers of Tuberculosis. In: Baidoo, E. (eds) Microbial Metabolomics. Methods in Molecular Biology, vol 1859. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8757-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8757-3_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8756-6

  • Online ISBN: 978-1-4939-8757-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics