Skip to main content

MicroRNAs Role in Prostate Cancer

  • Protocol
  • First Online:
Cancer Epigenetics for Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1856))

Abstract

Prostate cancer still represents a major health problem for men worldwide. Due to the specific limitation of the currently used clinical biomarkers for prostate cancer, there is a need to identify new and more accurate prostate-specific biomarkers, both for diagnosis and prediction. Small noncoding species of RNAs called microRNAs (miRNAs) have emerged as possible biomarkers in cancer tissues as well as biological fluids, including for prostate cancer. Moreover, it has been shown that miRNAs could be used as therapeutic targets in different cancer types, including prostate cancer, playing an important role in improving diagnosis and prognosis; and miRNAs have the potential to be clinically useful as predictors of response to personalized cancer therapy and as predictors of prognosis. The analysis of miRNAs in prostate tissue is rather straightforward and has been routinely done on fresh tissue. In addition, due to the more stable nature of miRNAs, they are amenable to be analyzed in archived formalin fixed paraffin embedded tissue as well, and also in serum, plasma and urine, using various analytical platforms including microarrays, next generation sequencing and real time PCR. Moreover, although the existence or prostasomes (microvesicles secreted by prostate cells including prostate cancer cells) has been known for years and they were studied as a source of biomarkers for prostate cancer, only recently it has been described that these vesicles also contain miRNAs that could be used as biomarkers in prostate cancer. This chapter underscores the feasibility of current technologies for miRNA analysis and their importance in prostate cancer biology. Moreover, elucidating the specific alteration of miRNA expression and how to modulate it in prostate tissue will open new avenues for developing therapeutic strategies for prostate cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Society AC (2015) Global cancer facts & figures, 3rd edn. American Cancer Society, Atlanta

    Google Scholar 

  2. Cary KC, Cooperberg MR (2013) Biomarkers in prostate cancer surveillance and screening: past, present, and future. Ther Adv Urol 5(6):318–329

    Google Scholar 

  3. Payne H, Cornford P (2011) Prostate-specific antigen: an evolving role in diagnosis, monitoring, and treatment evaluation in prostate cancer. Urol Oncol 29(6):593–601

    Google Scholar 

  4. Pienta KJ (2009) Critical appraisal of prostate-specific antigen in prostate cancer screening: 20 years later. Urology 73(5 Suppl):S11–S20

    Google Scholar 

  5. Parekh N, Lin Y, Marcella S, Kant AK, Lu-Yao G (2008) Associations of lifestyle and physiologic factors with prostate-specific antigen concentrations: evidence from the National Health and Nutrition Examination Survey (2001–2004). Cancer Epidemiol Biomark Prev 17(9):2467–2472

    Google Scholar 

  6. Wolf AM, Wender RC, Etzioni RB, Thompson IM, D'Amico AV, Volk RJ, Brooks DD, Dash C, Guessous I, Andrews K et al (2010) American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J Clin 60(2):70–98

    Google Scholar 

  7. Filella X, Foj L, Mila M, Auge JM, Molina R, Jimenez W (2013) PCA3 in the detection and management of early prostate cancer. Tumour Biol 34(3):1337–1347

    Google Scholar 

  8. Pepe P, Aragona F (2011) PCA3 score vs PSA free/total accuracy in prostate cancer diagnosis at repeat saturation biopsy. Anticancer Res 31(12):4445–4449

    Google Scholar 

  9. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Google Scholar 

  10. Robinson VL (2009) Rethinking the central dogma: noncoding RNAs are biologically relevant. Urol Oncol 27(3):304–306

    Google Scholar 

  11. Pennisi E (2012) Genomics. ENCODE project writes eulogy for junk DNA. Science 337(6099):1159–1161

    Google Scholar 

  12. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Google Scholar 

  13. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32(Database issue):D109–D111

    Google Scholar 

  14. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    Google Scholar 

  15. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101

    Google Scholar 

  16. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385

    Google Scholar 

  17. Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14(7):447–459

    Google Scholar 

  18. Wong NW, Chen Y, Chen S, Wang X (2017) OncomiR: an online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics 34(4):713–715

    Google Scholar 

  19. Willis RE (2012) Human gene control by vital oncogenes: revisiting a theoretical model and its implications for targeted cancer therapy. Int J Mol Sci 13(1):316–335

    Google Scholar 

  20. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Google Scholar 

  21. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M et al (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101(32):11755–11760

    Google Scholar 

  22. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Google Scholar 

  23. Mihailovich M, Bremang M, Spadotto V, Musiani D, Vitale E, Varano G, Zambelli F, Mancuso FM, Cairns DA, Pavesi G et al (2015) miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth. Nat Commun 6:8725

    Google Scholar 

  24. Berindan-Neagoe I, Monroig Pdel C, Pasculli B, Calin GA (2014) MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin 64(5):311–336

    Google Scholar 

  25. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033

    Google Scholar 

  26. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070

    Google Scholar 

  27. Pfeffer SR, Yang CH, Pfeffer LM (2015) The role of miR-21 in cancer. Drug Dev Res 76(6):270–277

    Google Scholar 

  28. Yang Y, Guo JX, Shao ZQ (2017) miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: an experimental study. Asian Pac J Trop Med 10(1):87–91

    Google Scholar 

  29. Buscaglia LE, Li Y (2011) Apoptosis and the target genes of microRNA-21. Chin J Cancer 30(6):371–380

    Google Scholar 

  30. Xu L, Leng H, Shi X, Ji J, Fu J (2017) MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis. Biomed Pharmacother 90:524–530

    Google Scholar 

  31. Willimott S, Wagner SD (2012) miR-125b and miR-155 contribute to BCL2 repression and proliferation in response to CD40 ligand (CD154) in human leukemic B-cells. J Biol Chem 287(4):2608–2617

    Google Scholar 

  32. Liu F, Song D, Wu Y, Liu X, Zhu J, Tang Y (2017) MiR-155 inhibits proliferation and invasion by directly targeting PDCD4 in non-small cell lung cancer. Thorac Cancer 8(6):613–619

    Google Scholar 

  33. Xue X, Liu Y, Wang Y, Meng M, Wang K, Zang X, Zhao S, Sun X, Cui L, Pan L et al (2016) MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 7(51):84508–84519

    Google Scholar 

  34. Cai ZK, Chen Q, Chen YB, Gu M, Zheng DC, Zhou J, Wang Z (2015) microRNA-155 promotes the proliferation of prostate cancer cells by targeting annexin 7. Mol Med Rep 11(1):533–538

    Google Scholar 

  35. Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, Dorn GW 2nd, van Rooij E, Olson EN (2011) MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 109(6):670–679

    Google Scholar 

  36. Imani S, Wei C, Cheng J, Khan MA, Fu S, Yang L, Tania M, Zhang X, Xiao X, Fu J (2017) MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion. Oncotarget 8(13):21362–21379

    Google Scholar 

  37. Park EY, Chang E, Lee EJ, Lee HW, Kang HG, Chun KH, Woo YM, Kong HK, Ko JY, Suzuki H et al (2014) Targeting of miR34a-NOTCH1 axis reduced breast cancer stemness and chemoresistance. Cancer Res 74(24):7573–7582

    Google Scholar 

  38. Dong X, Lv B, Li Y, Cheng Q, Su C, Yin G (2017) MiR-143 regulates the proliferation and migration of osteosarcoma cells through targeting MAPK7. Arch Biochem Biophys 630:47–53

    Google Scholar 

  39. Pekow J, Meckel K, Dougherty U, Butun F, Mustafi R, Lim J, Crofton C, Chen X, Joseph L, Bissonnette M (2015) Tumor suppressors miR-143 and miR-145 and predicted target proteins API5, ERK5, K-RAS, and IRS-1 are differentially expressed in proximal and distal colon. Am J Physiol Gastrointest Liver Physiol 308(3):G179–G187

    Google Scholar 

  40. Wu D, Huang P, Wang L, Zhou Y, Pan H, Qu P (2013) MicroRNA-143 inhibits cell migration and invasion by targeting matrix metalloproteinase 13 in prostate cancer. Mol Med Rep 8(2):626–630

    Google Scholar 

  41. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261

    Google Scholar 

  42. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518

    Google Scholar 

  43. Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessella RL, Rhees B, Kuslich C, Visakorpi T, Hamdy FC (2012) Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer 106(4):768–774

    Google Scholar 

  44. Massillo C, Dalton GN, Farre PL, De Luca P, De Siervi A (2017) Implications of microRNA dysregulation in the development of prostate cancer. Reproduction 154(4):R81–R97

    Google Scholar 

  45. Wan X, Huang W, Yang S, Zhang Y, Zhang P, Kong Z, Li T, Wu H, Jing F, Li Y (2016) Androgen-induced miR-27A acted as a tumor suppressor by targeting MAP2K4 and mediated prostate cancer progression. Int J Biochem Cell Biol 79:249–260

    Google Scholar 

  46. Kroiss A, Vincent S, Decaussin-Petrucci M, Meugnier E, Viallet J, Ruffion A, Chalmel F, Samarut J, Allioli N (2015) Androgen-regulated microRNA-135a decreases prostate cancer cell migration and invasion through downregulating ROCK1 and ROCK2. Oncogene 34(22):2846–2855

    Google Scholar 

  47. Jalava SE, Urbanucci A, Latonen L, Waltering KK, Sahu B, Janne OA, Seppala J, Lahdesmaki H, Tammela TL, Visakorpi T (2012) Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene 31(41):4460–4471

    Google Scholar 

  48. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Google Scholar 

  49. Hassan O, Ahmad A, Sethi S, Sarkar FH (2012) Recent updates on the role of microRNAs in prostate cancer. J Hematol Oncol 5:9

    Google Scholar 

  50. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27(31):4373–4379

    Google Scholar 

  51. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67(13):6130–6135

    Google Scholar 

  52. Siebolts U, Varnholt H, Drebber U, Dienes HP, Wickenhauser C, Odenthal M (2009) Tissues from routine pathology archives are suitable for microRNA analyses by quantitative PCR. J Clin Pathol 62(1):84–88

    Google Scholar 

  53. Kong W, Zhao JJ, He L, Cheng JQ (2009) Strategies for profiling microRNA expression. J Cell Physiol 218(1):22–25

    Google Scholar 

  54. Zhao Z, Stephan C, Weickmann S, Jung M, Kristiansen G, Jung K (2017) Tissue-based MicroRNAs as predictors of biochemical recurrence after radical prostatectomy: what can we learn from past studies? Int J Mol Sci 18(10):E2023

    Google Scholar 

  55. Leite KR, Canavez JM, Reis ST, Tomiyama AH, Piantino CB, Sanudo A, Camara-Lopes LH, Srougi M (2011) miRNA analysis of prostate cancer by quantitative real time PCR: comparison between formalin-fixed paraffin embedded and fresh-frozen tissue. Urol Oncol 29(5):533–537

    Google Scholar 

  56. Peskoe SB, Barber JR, Zheng Q, Meeker AK, De Marzo AM, Platz EA, Lupold SE (2017) Differential long-term stability of microRNAs and RNU6B snRNA in 12–20 year old archived formalin-fixed paraffin-embedded specimens. BMC Cancer 17(1):32

    Google Scholar 

  57. Kakimoto Y, Tanaka M, Kamiguchi H, Ochiai E, Osawa M (2016) MicroRNA stability in FFPE tissue samples: dependence on GC content. PLoS One 11(9):e0163125

    Google Scholar 

  58. Zhang X, Chen J, Radcliffe T, Lebrun DP, Tron VA, Feilotter H (2008) An array-based analysis of microRNA expression comparing matched frozen and formalin-fixed paraffin-embedded human tissue samples. J Mol Diagn 10(6):513–519

    Google Scholar 

  59. Meng W, McElroy JP, Volinia S, Palatini J, Warner S, Ayers LW, Palanichamy K, Chakravarti A, Lautenschlaeger T (2013) Comparison of microRNA deep sequencing of matched formalin-fixed paraffin-embedded and fresh frozen cancer tissues. PLoS One 8(5):e64393

    Google Scholar 

  60. Loudig O, Wang T, Ye K, Lin J, Wang Y, Ramnauth A, Liu C, Stark A, Chitale D, Greenlee R et al (2017) Evaluation and adaptation of a laboratory-based cDNA library preparation protocol for retrospective sequencing of archived MicroRNAs from up to 35-year-old clinical FFPE specimens. Int J Mol Sci 18(3):E627

    Google Scholar 

  61. Kolbert CP, Feddersen RM, Rakhshan F, Grill DE, Simon G, Middha S, Jang JS, Simon V, Schultz DA, Zschunke M et al (2013) Multi-platform analysis of microRNA expression measurements in RNA from fresh frozen and FFPE tissues. PLoS One 8(1):e52517

    Google Scholar 

  62. Joseph A, Gnanapragasam VJ (2011) Laser-capture microdissection and transcriptional profiling in archival FFPE tissue in prostate cancer. Methods Mol Biol 755:291–300

    Google Scholar 

  63. Nonn L, Vaishnav A, Gallagher L, Gann PH (2010) mRNA and micro-RNA expression analysis in laser-capture microdissected prostate biopsies: valuable tool for risk assessment and prevention trials. Exp Mol Pathol 88(1):45–51

    Google Scholar 

  64. Seclaman E, Narita D, Anghel A, Cireap N, Ilina R, Sirbu IO, Marian C (2017) MicroRNA expression in laser micro-dissected breast cancer tissue samples—a pilot study. Pathol Oncol Res

    Google Scholar 

  65. Mihala A, Alexa AA, Samoila C, Dema A, Vizitiu AC, Anghel A, Tamas L, Marian CV, Sirbu IO (2015) A pilot study on the expression of microRNAs resident on chromosome 21 in laser microdissected FFPE prostate adenocarcinoma samples. Romanian J Morphol Embryol 56(3):1063–1068

    Google Scholar 

  66. Carlsson J, Helenius G, Karlsson M, Lubovac Z, Andren O, Olsson B, Klinga-Levan K (2010) Validation of suitable endogenous control genes for expression studies of miRNA in prostate cancer tissues. Cancer Genet Cytogenet 202(2):71–75

    Google Scholar 

  67. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Google Scholar 

  68. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741

    Google Scholar 

  69. Balacescu O, Petrut B, Tudoran O, Feflea D, Balacescu L, Anghel A, Sirbu IO, Seclaman E, Marian C (2017) Urinary microRNAs for prostate cancer diagnosis, prognosis, and treatment response: are we there yet? Wiley Interdiscip Rev RNA 8(6)

    Google Scholar 

  70. Aalberts M, Stout TA, Stoorvogel W (2014) Prostasomes: extracellular vesicles from the prostate. Reproduction 147(1):R1–R14

    Google Scholar 

  71. Zijlstra C, Stoorvogel W (2016) Prostasomes as a source of diagnostic biomarkers for prostate cancer. J Clin Invest 126(4):1144–1151

    Google Scholar 

  72. Fendler A, Stephan C, Yousef GM, Kristiansen G, Jung K (2016) The translational potential of microRNAs as biofluid markers of urological tumours. Nat Rev Urol 13(12):734–752

    Google Scholar 

  73. Dijkstra S, Birker IL, Smit FP, Leyten GH, de Reijke TM, van Oort IM, Mulders PF, Jannink SA, Schalken JA (2014) Prostate cancer biomarker profiles in urinary sediments and exosomes. J Urol 191(4):1132–1138

    Google Scholar 

  74. Rodriguez M, Bajo-Santos C, Hessvik NP, Lorenz S, Fromm B, Berge V, Sandvig K, Line A, Llorente A (2017) Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer 16(1):156

    Google Scholar 

  75. Chen X, Liang H, Zhang J, Zen K, Zhang CY (2012) Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell 3(1):28–37

    Google Scholar 

  76. Gallo A, Tandon M, Alevizos I, Illei GG (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7(3):e30679

    Google Scholar 

  77. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39(16):7223–7233

    Google Scholar 

  78. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108(12):5003–5008

    Google Scholar 

  79. Prior C, Guillen-Grima F, Robles JE, Rosell D, Fernandez-Montero JM, Agirre X, Catena R, Calvo A (2010) Use of a combination of biomarkers in serum and urine to improve detection of prostate cancer. World J Urol 28(6):681–686

    Google Scholar 

  80. Roobol MJ, Haese A, Bjartell A (2011) Tumour markers in prostate cancer III: biomarkers in urine. Acta Oncol 50(Suppl 1):85–89

    Google Scholar 

  81. Sethi S, Kong D, Land S, Dyson G, Sakr WA, Sarkar FH (2013) Comprehensive molecular oncogenomic profiling and miRNA analysis of prostate cancer. Am J Transl Res 5(2):200–211

    Google Scholar 

  82. Sethi S, Ali S, Kong D, Philip PA, Sarkar FH (2013) Clinical implication of microRNAs in molecular pathology. Clin Lab Med 33(4):773–786

    Google Scholar 

  83. Sethi S, Ali S, Sarkar FH (2014) MicroRNAs in personalized cancer therapy. Clin Genet 86(1):68–73

    Google Scholar 

  84. Lopez-Serra P, Esteller M (2012) DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene 31(13):1609–1622

    Google Scholar 

  85. Kunej T, Godnic I, Ferdin J, Horvat S, Dovc P, Calin GA (2011) Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 717(1–2):77–84

    Google Scholar 

  86. Hardy TM, Tollefsbol TO (2011) Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3(4):503–518

    Google Scholar 

  87. Miozzo M, Vaira V, Sirchia SM (2015) Epigenetic alterations in cancer and personalized cancer treatment. Future Oncol 11(2):333–348

    Google Scholar 

  88. Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S, Barbarotto E, Cimmino A, Adair B, Wojcik SE, Valeri N, Calore F, Sampath D, Fanini F, Vannini I, Musuraca G, Dell'Aquila M, Alder H, Davuluri RV, Rassenti LZ, Negrini M, Nakamura T, Amadori D, Kay NE, Rai KR, Keating MJ, Kipps TJ, Calin GA, Croce CM (2011) Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA 305(1):59–67

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalin Marian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Balacescu, O., Dumitrescu, R.G., Marian, C. (2018). MicroRNAs Role in Prostate Cancer. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics for Precision Medicine . Methods in Molecular Biology, vol 1856. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8751-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8751-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8750-4

  • Online ISBN: 978-1-4939-8751-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics