Skip to main content

Geometric Morphometrics as a Tool to Evaluate Teratogenic Effects in Zebrafish (Danio rerio)

  • Protocol
  • First Online:
Teratogenicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1797))

Abstract

Geometric morphometrics allows for the characterization of shape using Cartesian geometric coordinates rather than linear or volumetric measurements, which are dependent upon size and are insufficient to capture geometric shape. By using landmarks on specimens, variations in position, orientation and scale between specimens can be removed to better compare variations in shape. This method has primarily been used in the fields of evolutionary biology and taxonomy. Here we describe how geometric morphometrics can be used to delineate variations in shape caused by teratogenic compounds in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kavlock RJ, Daston GP, DeRosa C et al (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect 104(Suppl 4):715–740

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ankley GT, Bennett RS, Erickson RJ et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29(3):730–741. https://doi.org/10.1002/etc.34

    Article  PubMed  CAS  Google Scholar 

  3. King Heiden TC, Spitsbergen J, Heideman W, Peterson RE (2009) Persistent adverse effects on health and reproduction caused by exposure of zebrafish to 2,3,7,8-tetrachlorodibenzo-p-dioxin during early development and gonad differentiation. Toxicol Sci 109(1):75–87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Félix LM, Serafim C, Martins MJ et al (2017) Morphological and behavioral responses of zebrafish after 24 h of ketamine embryonic exposure. Toxicol Appl Pharmacol 321:27–36. https://doi.org/10.1016/j.taap.2017.02.013

    Article  PubMed  CAS  Google Scholar 

  5. Graeb BDS, Dettmers JM, Wahl DH, Cáceres C (2004) Fish size and prey availability affect growth survival, prey selection, and foraging behavior of larval yellow perch. Trans Am Fish Soc 133:504–514

    Article  Google Scholar 

  6. Rice JA, Crowder LB, Holey ME (1987) Exploration of mechanisms regulating larval survival in Lake Michigan bloater: a recruitment analysis based on characteristics of individual larvae. Trans Am Fish Soc 116:703–718

    Article  Google Scholar 

  7. Hernandez LP (2000) Intraspecific scaling of feeding mechanics in an ontogenetic series of zebrafish, Danio rerio. J Exp Biol 203:3033–3043

    PubMed  CAS  Google Scholar 

  8. Bookstein FL, Sampson PD, Connor PD, Streissguth AP (2002) Midline corpus callosum is a neuroanatomical focus of fetal alcohol damage. Anat Rec 269(3):162–174. https://doi.org/10.1002/ar.10110

    Article  PubMed  Google Scholar 

  9. Bookstein FL, Streissguth AP, Sampson PD et al (2002) Corpus callosum shape and neuropsychological deficits in adult males with heavy fetal alcohol exposure. Neuroimage 15(1):233–251. https://doi.org/10.1006/nimg.2001.0977

    Article  PubMed  Google Scholar 

  10. Takács P, Vitál Z, Ferincz Á, Staszny Á (2016) Repeatability, reproducibility, separative power and subjectivity of different fish morphometric analysis methods. PLoS One 11(6):e0157890. https://doi.org/10.1371/journal.pone.0157890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Allen DE, Leamy LJ (2001) 2,3,7,8-Tetrachlorodibenzo-p-Dioxin affects size and shape, but not asymmetry, of mandibles in mice. Ecotoxicology 10(3):167–176. https://doi.org/10.1023/A:1016693911300

    Article  PubMed  CAS  Google Scholar 

  12. Klingenberg CP (2015) Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry 7:843–934

    Article  Google Scholar 

  13. Schnitzler J, Frederich B, Dussenne M et al (2016) Triclosan exposure results in alterations of thyroid hormone status and retarded early development and metamorphosis in Cyprinodon variegatus. Aquat Toxicol 181:1–10

    Article  PubMed  CAS  Google Scholar 

  14. Sholts SB, Korkalainen M, Simanainen U et al (2015) In utero/lactational and adult exposures to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) show differential effects on craniofacial development and growth in rats. Toxicology 337:30–38. https://doi.org/10.1016/j.tox.2015.08.010

    Article  PubMed  CAS  Google Scholar 

  15. Georga I, Koumoundouros G (2010) Thermally induced plasticity of body shape in adult zebrafish Danio rerio (Hamilton, 1822). J Morphol 271:1319–1327

    Article  PubMed  Google Scholar 

  16. Sharma M, Gorea RK, Gorea A, Abuderman A (2016) A morphometric study of the human mandible in the Indian population for sex determination. Egypt J Forensic Sci 6(2):165–169. https://doi.org/10.1016/j.ejfs.2015.01.002

    Article  Google Scholar 

  17. Chollett D, Perez KE, King-Heiden TC (2014) Embryonic exposure to sublethal concentrations of 2,3,7,8-TCDD impairs prey capture by zebrafish larvae. Environ Toxicol Chem 33(4):784–790

    Article  PubMed  CAS  Google Scholar 

  18. López-Romero F, Zúñiga G, Martínez-Jerónimo F (2012) Asymmetric patterns in the cranial skeleton of zebrafish (Danio rerio) exposed to sodium pentachlorophenate at different embryonic developmental stages. Ecotoxicol Environ Saf 84:25–31

    Article  PubMed  CAS  Google Scholar 

  19. Setaidi E, Tsumura S, Kassam D, Yamaoka K (2006) Effect of saddleback syndrome and vertebral deformity on the body shape and size in hatchery-reared juvenile red spotted grouper, Epinephelus akaara (Perciformes: Serranidae): a geometric morphometric approach. J Appl Ichthyol 22(1):49–53

    Article  Google Scholar 

  20. Bambino K, Chu J (2017) Zebrafish in toxicology and environmental health. In: Sadler KC (ed) Zebrafish at the interface of development and disease research, vol 124. Academic Press, London, pp 331–359

    Chapter  Google Scholar 

  21. Yang L, Ho NY, Alshut R et al (2009) Zebrafish embryos as models for embryotoxic and teratological effectgs of chemicals. Reprod Toxicol 28:245–253

    Article  PubMed  CAS  Google Scholar 

  22. Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Elsevier, Academic Press, San Diego, CA

    Google Scholar 

  23. Zelditch ML, Swiderski DL, Sheets HD (2012) A practical companion to geometric morphometrics for biologists: running analyses in freely-available software. http://booksite.elsevier.com/9780123869036/content/Workbook.pdf

  24. Walker M, Kimmel C (2007) A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotech Histochem 82(1):23–28. https://doi.org/10.1080/10520290701333558

    Article  PubMed  CAS  Google Scholar 

  25. Rohlf FJ (2015) tpsUtil32. file utility program. Department of Ecology and Evolution, State University of New York at Stony Brook

    Google Scholar 

  26. Rohlf FJ (2005) tpsDig2, digitize landmarks and outline, Ver 2.05. Department of Ecology and Evolution, State University of New York at Stony Brook, NY

    Google Scholar 

  27. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):4. 9 pp

    Google Scholar 

  28. Lazic SE (2008) Why we should use simpler models if the data allow this: relevance for ANOVA designs in experimental biology. BMC Physiol 8:16–16. https://doi.org/10.1186/1472-6793-8-16

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors thank Russell Minton for advice on choosing the easiest-to-use software for geometric morphometric analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tisha C. King-Heiden .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Perez, K.E., King-Heiden, T.C. (2018). Geometric Morphometrics as a Tool to Evaluate Teratogenic Effects in Zebrafish (Danio rerio). In: Félix, L. (eds) Teratogenicity Testing. Methods in Molecular Biology, vol 1797. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7883-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7883-0_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7882-3

  • Online ISBN: 978-1-4939-7883-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics