Skip to main content

Cellular Responses in Drosophila melanogaster Following Teratogen Exposure

  • Protocol
  • First Online:
Teratogenicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1797))

Abstract

Studies focusing on the teratogenicity of a series of new chemicals that are produced in a daily basis represent an important focus in toxicological/pharmaceutical research, particularly due to the risks arising from occupational exposure of the subjects. However, the complex mating procedures, scheduling of treatments, requirements for trained personnel, and elevated costs of traditional teratological assays with mammals hamper this type of assessments. Accordingly, the use of Drosophila melanogaster as a model for teratological studies has received considerable attention. Here some general protocols about Drosophila exposure—at different stages of their life cycle—to any chemical with putative teratological activity are presented. Importantly, some details about D. melanogaster embryonic, larval, pupal, or adult endpoints, that can be used to assess teratogenicity using flies as a model organism, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avanesian A, Semnani S, Jafari M (2009) Can Drosophila melanogaster represent a model system for the detection of reproductive adverse drug reactions? Drug Discov Today 14(15–16):761–766. https://doi.org/10.1016/j.drudis.2009.05.010

    Article  PubMed  CAS  Google Scholar 

  2. Bolon B, Bucci TJ, Warbritton AR et al (1997) Differential follicle counts as a screen for chemically induced ovarian toxicity in mice: results from continuous breeding bioassays. Fundam Appl Toxicol 39(1):1–10

    Article  CAS  PubMed  Google Scholar 

  3. Rand MD, Montgomery SL, Prince L, Vorojeikina D (2001) Developmental toxicity assays using the Drosophila model. In: Current protocols in toxicology. Wiley, Hoboken. https://doi.org/10.1002/0471140856.tx0112s59

    Chapter  Google Scholar 

  4. Schuler RL, Hardin BD, Niemeier RW (1982) Drosophila as a tool for the rapid assessment of chemicals for teratogenicity. Teratog Carcinog Mutagen 2(3–4):293–301

    Article  CAS  PubMed  Google Scholar 

  5. Bianchini MC, Gularte CO, Escoto DF et al (2016) Peumus boldus (Boldo) aqueous extract present better protective effect than Boldine against manganese-induced toxicity in D. melanogaster. Neurochem Res 41(10):2699–2707. https://doi.org/10.1007/s11064-016-1984-z

    Article  PubMed  CAS  Google Scholar 

  6. Bonilla E, Contreras R, Medina-Leendertz S et al (2012) Minocycline increases the life span and motor activity and decreases lipid peroxidation in manganese treated Drosophila melanogaster. Toxicology 294(1):50–53. https://doi.org/10.1016/j.tox.2012.01.016

    Article  PubMed  CAS  Google Scholar 

  7. Guarnieri DJ, Heberlein U (2003) Drosophila melanogaster, a genetic model system for alcohol research. Int Rev Neurobiol 54:199–228

    Article  CAS  PubMed  Google Scholar 

  8. Gupta SC, Siddique HR, Mathur N et al (2007) Adverse effect of organophosphate compounds, dichlorvos and chlorpyrifos in the reproductive tissues of transgenic Drosophila melanogaster: 70kDa heat shock protein as a marker of cellular damage. Toxicology 238(1):1–14. https://doi.org/10.1016/j.tox.2007.05.017

    Article  PubMed  CAS  Google Scholar 

  9. Hirsch HV, Mercer J, Sambaziotis H et al (2003) Behavioral effects of chronic exposure to low levels of lead in Drosophila melanogaster. Neurotoxicology 24(3):435–442. https://doi.org/10.1016/S0161-813X(03)00021-4

    Article  PubMed  CAS  Google Scholar 

  10. Ortiz JG, Opoka R, Kane D, Cartwright IL (2009) Investigating arsenic susceptibility from a genetic perspective in Drosophila reveals a key role for glutathione synthetase. Toxicol Sci 107(2):416–426. https://doi.org/10.1093/toxsci/kfn192

    Article  PubMed  CAS  Google Scholar 

  11. Posgai R, Cipolla-McCulloch CB, Murphy KR et al (2011) Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere 85(1):34–42. https://doi.org/10.1016/j.chemosphere.2011.06.040

    Article  PubMed  CAS  Google Scholar 

  12. Rand MD, Dao JC, Clason TA (2009) Methylmercury disruption of embryonic neural development in Drosophila. Neurotoxicology 30(5):794–802. https://doi.org/10.1016/j.neuro.2009.04.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wasserkort R, Koller T (1997) Screening toxic effects of volatile organic compounds using Drosophila melanogaster. J Appl Toxicol 17(2):119–125

    Article  CAS  PubMed  Google Scholar 

  14. Schuler RL, Radike MA, Hardin BD, Niemeier RW (1985) Pattern of response of intact Drosophila to known teratogens. J Am Coll Toxicol 4(4):291–303. https://doi.org/10.3109/10915818509078681

    Article  CAS  Google Scholar 

  15. Mackay TF, Anholt RR (2006) Of flies and man: Drosophila as a model for human complex traits. Annu Rev Genomics Hum Genet 7:339–367. https://doi.org/10.1146/annurev.genom.7.080505.115758

    Article  PubMed  CAS  Google Scholar 

  16. Misra JR, Horner MA, Lam G, Thummel CS (2011) Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev 25(17):1796–1806. https://doi.org/10.1101/gad.17280911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sykiotis GP, Bohmann D (2010) Stress-activated cap'n'collar transcription factors in aging and human disease. Sci Signal 3(112):re3. https://doi.org/10.1126/scisignal.3112re3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Affleck JG, Walker VK (2008) A role for Drosophila in understanding drug-induced cytotoxicity and teratogenesis. Cytotechnology 57(1):1–9. https://doi.org/10.1007/s10616-008-9124-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Rand MD (2010) Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32(1):74–83. https://doi.org/10.1016/j.ntt.2009.06.004

    Article  PubMed  CAS  Google Scholar 

  20. Williams DW, Truman JW (2004) Mechanisms of dendritic elaboration of sensory neurons in Drosophila: insights from in vivo time lapse. J Neurosci 24(7):1541–1550. https://doi.org/10.1523/JNEUROSCI.4521-03.2004

    Article  PubMed  CAS  Google Scholar 

  21. Lynch DW, Schuler RL, Hood RD, Davis DG (1991) Evaluation of Drosophila for screening developmental toxicants: test results with eighteen chemicals and presentation of a new Drosophila bioassay. Teratog Carcinog Mutagen 11(3):147–173

    Article  CAS  PubMed  Google Scholar 

  22. Matthews KA (1994) Chapter 2 care and feeding of Drosophila melanogaster**Keep your stocks clean, your genotypes complete, and your aspirator to yourself. Methods Cell Biol 44:13–32. https://doi.org/10.1016/S0091-679X(08)60905-X

    Article  PubMed  CAS  Google Scholar 

  23. Mirabolghasemi G, Azarnia M (2002) Developmental changes in Drosophila melanogaster following exposure to alternating electromagnetic fields. Bioelectromagnetics 23(6):416–420. https://doi.org/10.1002/bem.10042

    Article  PubMed  Google Scholar 

  24. Bownes M, Kalthoff K (1974) Embryonic defects in Drosophila eggs after partial u.V. Irradiation at different wavelengths. J Embryol Exp Morphol 31(2):329–345

    PubMed  CAS  Google Scholar 

  25. Rand MD, Kearney AL, Dao J, Clason T (2010) Permeabilization of Drosophila embryos for introduction of small molecules. Insect Biochem Mol Biol 40(11):792–804. https://doi.org/10.1016/j.ibmb.2010.07.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Rand MD (2014) A method of permeabilization of Drosophila embryos for assays of small molecule activity. J Vis Exp (89). https://doi.org/10.3791/51634

  27. Ecker A, Gonzaga T, Seeger RL et al (2017) High-sucrose diet induces diabetic-like phenotypes and oxidative stress in Drosophila melanogaster: protective role of Syzygium cumini and Bauhinia forficata. Biomed Pharmacother 89:605–616. https://doi.org/10.1016/j.biopha.2017.02.076

    Article  PubMed  CAS  Google Scholar 

  28. Macedo GE, Gomes KK, Rodrigues NR et al (2017) Senecio brasiliensis impairs eclosion rate and induces apoptotic cell death in larvae of Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 198:45–57. https://doi.org/10.1016/j.cbpc.2017.05.004

    Article  PubMed  CAS  Google Scholar 

  29. Rajamohan A, Sinclair BJ (2008) Short-term hardening effects on survival of acute and chronic cold exposure by Drosophila melanogaster larvae. J Insect Physiol 54(4):708–718. https://doi.org/10.1016/j.jinsphys.2008.01.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Weiner AK, Ramirez A, Zintel T et al (2014) Bisphenol a affects larval growth and advances the onset of metamorphosis in Drosophila melanogaster. Ecotoxicol Environ Saf 101:7–13. https://doi.org/10.1016/j.ecoenv.2013.12.008

    Article  PubMed  CAS  Google Scholar 

  31. Duerfeldt AS, Peterson LB, Maynard JC et al (2012) Development of a Grp94 inhibitor. J Am Chem Soc 134(23):9796–9804. https://doi.org/10.1021/ja303477g

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wong DM, Shen Z, Owyang KE, Martinez-Agosto JA (2014) Insulin- and warts-dependent regulation of tracheal plasticity modulates systemic larval growth during hypoxia in Drosophila melanogaster. PLoS One 9(12):e115297. https://doi.org/10.1371/journal.pone.0115297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lozinsky OV, Lushchak OV, Storey JM et al (2012) Sodium nitroprusside toxicity in Drosophila melanogaster: delayed pupation, reduced adult emergence, and induced oxidative/nitrosative stress in eclosed flies. Arch Insect Biochem Physiol 80(3):166–185. https://doi.org/10.1002/arch.21033

    Article  PubMed  CAS  Google Scholar 

  34. Lozinsky OV, Lushchak OV, Storey JM et al (2013) The mitochondrial uncoupler 2,4-dinitrophenol attenuates sodium nitroprusside-induced toxicity in Drosophila melanogaster: potential involvement of free radicals. Comp Biochem Physiol C Toxicol Pharmacol 158(4):244–252. https://doi.org/10.1016/j.cbpc.2013.09.002

    Article  PubMed  CAS  Google Scholar 

  35. Singh BN, Pandey M (1991) Intra- and interspecies variations in pupation height in Drosophila. Indian J Exp Biol 29(10):926–929

    PubMed  CAS  Google Scholar 

  36. Tekieh E, Kazemi M, Dehghani L et al (2011) Effects of oral morphine on the larvae, pupae and imago development in Drosophila melanogaster. Cell 13(3):149–154

    CAS  Google Scholar 

  37. Keroles MB, Dusseault SK, Liu C (2014) Imaging through the pupal case of Drosophila melanogaster. J Vis Exp (83):e51239. https://doi.org/10.3791/51239

  38. Chantel T. Barrett BS (2005) Microinjection into Drosophila embryos: a guide for the beginner. Memorial University of Newfoundland

    Google Scholar 

  39. Kiehart DP, Crawford JM, Montague RA (2007) Collection, dechorionation, and preparation of Drosophila embryos for quantitative microinjection. CSH Protoc 2007:pdb prot4717. https://doi.org/10.1101/pdb.prot4717

    Article  PubMed  Google Scholar 

  40. Sivlingham R, Brink NG (1988) Somatic mutation induced by heliotrine in Drosophila. Teratog Carcinog Mutagen 8(4):205–213

    Article  CAS  PubMed  Google Scholar 

  41. Foronda D, Martín P, Sánchez-Herrero E (2012) Drosophila Hox and sex-determination genes control segment elimination through EGFR and extramacrochetae activity. PLoS Genet 8(8):e1002874. https://doi.org/10.1371/journal.pgen.1002874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ninov N, Chiarelli DA, Martin-Blanco E (2007) Extrinsic and intrinsic mechanisms directing epithelial cell sheet replacement during Drosophila metamorphosis. Development 134(2):367–379. https://doi.org/10.1242/dev.02728

    Article  PubMed  CAS  Google Scholar 

  43. Askin H, Uysal H, Altun D (2007) Preventive role of folic acid on the developmental toxicity of phenol in Drosophila melanogaster. Toxicol Ind Health 23(10):591–598. https://doi.org/10.1177/0748233708090905

    Article  PubMed  CAS  Google Scholar 

  44. Palermo AM, Reynoso AS, López Nigro M et al (2004) Teratogenic evaluation of metronidazole and ornidazole using Drosophila melanogaster as an experimental model. Birth Defects Res A Clin Mol Teratol 70(4):157–162. https://doi.org/10.1002/bdra.20008

    Article  PubMed  CAS  Google Scholar 

  45. Affleck JG, Neumann K, Wong L, Walker VK (2006) The effects of methotrexate on Drosophila development, female fecundity, and gene expression. Toxicol Sci 89(2):495–503. https://doi.org/10.1093/toxsci/kfj036

    Article  PubMed  CAS  Google Scholar 

  46. Affleck JG, Walker VK (2007) Transgenic rescue of methotrexate-induced teratogenicity in Drosophila melanogaster. Toxicol Sci 99(2):522–531. https://doi.org/10.1093/toxsci/kfm123

    Article  PubMed  CAS  Google Scholar 

  47. Bournias-Vardiabasis N, Teplitz RL, Chernoff GF, Seecof RL (1983) Detection of teratogens in the Drosophila embryonic cell culture test: assay of 100 chemicals. Teratology 28(1):109–122. https://doi.org/10.1002/tera.1420280114

    Article  PubMed  CAS  Google Scholar 

  48. Wilson JG, Fraser FC (1977) Current status of teratology. In: Handbook of Teratology. Plenum Press, New York, pp 309–355

    Chapter  Google Scholar 

  49. Seecof RL (1979) Mass cultures of Drosophila embryonic cell cultures. Tissue Cult Assoc Man 5:1019–1022

    Article  Google Scholar 

  50. Seecof RL, Gerson I, Donady JJ, Teplitz RL (1973) Drosophilia myogenesis in vitro: the genesis of “small” myocytes and myotubes. Dev Biol 35(2):250–261

    Article  CAS  PubMed  Google Scholar 

  51. Dewhurst SA, Seecof RL (1975) Development of acetylcholine metabolizing enzymes in Drosophila embryos and in cultures of embryonic drosophila cells. Comp Biochem Physiol C Toxicol Pharmacol 50(1):53–58

    CAS  Google Scholar 

  52. Adedara IA, Abolaji AO, Rocha JB, Farombi EO (2016) Diphenyl diselenide protects against mortality, locomotor deficits and oxidative stress in Drosophila melanogaster model of manganese-induced neurotoxicity. Neurochem Res 41(6):1430–1438. https://doi.org/10.1007/s11064-016-1852-x

    Article  PubMed  CAS  Google Scholar 

  53. Altun D, Uysal H, Ayar A, Askin H (2011) Removal of the toxic effects of chlormadinon acetate on the development of Drosophila melanogaster via the use of nordihydroguaiaretic acid. Toxicol Ind Health 27(1):29–33. https://doi.org/10.1177/0748233710380216

    Article  PubMed  CAS  Google Scholar 

  54. Ranganathan S, Davis DG, Hood RD (1987) Developmental toxicity of ethanol in Drosophila melanogaster. Teratology 36(1):45–49. https://doi.org/10.1002/tera.1420360107

    Article  PubMed  CAS  Google Scholar 

  55. Uysal HAH (2007) The effects of chronic phenol exposure via diet on developmental stages of Drosophila melanogaster (Diptera:Drosophilidae). Fresenius Environ Bull 16:991–997

    CAS  Google Scholar 

  56. Dzitoyeva S, Dimitrijevic N, Manev H (2003) Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi). BMC Genomics 4(1):33. https://doi.org/10.1186/1471-2164-4-33

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPERGS, CAPES, CNPq, FINEP, INCT-EN, and UNIPAMPA. Additional support was given by CNPq/FAPERGS/DECIT/SCTIE-MS/PRONEM 16/2551-0000248-7 and CNPq (Universal) research grant # 449428/2014-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiana S. Ávila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bianchini, M.C., Portela, J.L.R., Puntel, R.L., Ávila, D.S. (2018). Cellular Responses in Drosophila melanogaster Following Teratogen Exposure. In: Félix, L. (eds) Teratogenicity Testing. Methods in Molecular Biology, vol 1797. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7883-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7883-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7882-3

  • Online ISBN: 978-1-4939-7883-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics