Experimental and Computational Protocols for Studies of Cross-Seeding Amyloid Assemblies

  • Baiping Ren
  • Rundong Hu
  • Mingzhen Zhang
  • Yonglan Liu
  • Lijian Xu
  • Binbo Jiang
  • Jie Ma
  • Buyong Ma
  • Ruth Nussinov
  • Jie Zheng
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)


Alzheimer’s disease (AD) and type 2 diabetes (T2D) are two common protein aggregation diseases. Compelling evidence has shown a link between AD and T2D, which may derive from interspecies cross-sequence interactions between amyloid-β peptide (Aβ), associated with AD, and human islet amyloid polypeptide (hIAPP), associated with T2D. Herein, we present experimental and computational protocols and tools to study the aggregate structures and kinetics, conformational conversion, and molecular interactions of Aβ-hIAPP mixtures. These protocols could be generally applied to other cross-seeding behaviors of amyloid peptides.

Key words

Amyloid peptides Aβ hIAPP Cross-seeding Alzheimer disease Diabetes 



J.Z. thanks the financial support from NSF (CBET-1510099 and DMR-1607475), Alzheimer Association (2015-NIRG-341372), and National Natural Science Foundation of China (NSFC-21528601). The high-performance computational facilities of the Biowulf PC/Linux cluster at the NIH were mainly used for the simulations. This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under contract number HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. This research was supported (in part) by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.


  1. 1.
    Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366CrossRefGoogle Scholar
  2. 2.
    Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-[beta] protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842CrossRefGoogle Scholar
  3. 3.
    DeToma AS, Salamekh S, Ramamoorthy A, Lim MH (2012) Misfolded proteins in Alzheimer’s disease and type II diabetes. Chem Soc Rev 41(2):608–621CrossRefGoogle Scholar
  4. 4.
    Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53(2):474–481CrossRefGoogle Scholar
  5. 5.
    Nicolls MR (2004) The clinical and biological relationship between type II diabetes Mellitus and Alzheimers disease. Curr Alzheimer Res 1(1):47–54CrossRefGoogle Scholar
  6. 6.
    Andreetto E, Yan LM, Tatarek-Nossol M, Velkova A, Frank R, Kapurniotu A (2010) Identification of hot regions of the A beta-IAPP interaction interface as high-affinity binding sites in both cross- and self-association. Angewandte Chemie Int Ed 49(17):3081–3085CrossRefGoogle Scholar
  7. 7.
    Miklossy J, Qing H, Radenovic A, Kis A, Vileno B, Laszlo F, Miller L, Martins RN, Waeber G, Mooser V, Bosman F, Khalili K, Darbinian N, McGeer PL (2010) Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes. Neurobiol Aging 31(9):1503–1515CrossRefGoogle Scholar
  8. 8.
    Luca S, Yau W-M, Leapman R, Tycko R (2007) Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 46(47):13505–13522CrossRefGoogle Scholar
  9. 9.
    Brender JR, Salamekh S, Ramamoorthy A (2012) Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective. Acc Chem Res 45(3):454–462CrossRefGoogle Scholar
  10. 10.
    Zhang MZ, Hu RD, Chen H, Chang Y, Ma J, Liang GZ, Mi JY, Wang YR, Zheng J (2015) Polymorphic cross-seeding amyloid assemblies of amyloid-beta and human islet amyloid polypeptide. Phys Chem Chem Phys 17(35):23245–23256CrossRefGoogle Scholar
  11. 11.
    Zhang M, Hu R, Chen H, Chang Y, Gong X, Liu F, Zheng J (2015) Interfacial interaction and lateral association of cross-seeding assemblies between hIAPP and rIAPP oligomers. Phys Chem Chem Phys 17:10373–10382CrossRefGoogle Scholar
  12. 12.
    Nicolls MR (2004) The clinical and biological relationship between Type II diabetes Mellitus and Alzheimer’s disease. Curr Alzheimer Res 1(1):47–54CrossRefGoogle Scholar
  13. 13.
    Mandal PK, Pettegrew JW, Masliah E, Hamilton RL, Mandal R (2006) Interaction between Aβ peptide and α synuclein: molecular mechanisms in overlapping pathology of Alzheimer’s and Parkinson’s in dementia with Lewy body disease. Neurochem Res 31(9):1153–1162CrossRefGoogle Scholar
  14. 14.
    Stancu I-C, Vasconcelos B, Terwel D, Dewachter I (2014) Models of β-amyloid induced Tau-pathology: the long and “folded” road to understand the mechanism. Mol Neurodegener 9(1):1–14CrossRefGoogle Scholar
  15. 15.
    Liu P, Zhang S, Chen M-s, Liu Q, Wang C, Wang C, Li Y-M, Besenbacher F, Dong M (2012) Co-assembly of human islet amyloid polypeptide (hIAPP)/insulin. Chem Commun 48(2):191–193CrossRefGoogle Scholar
  16. 16.
    Hartman K, Brender JR, Monde K, Ono A, Evans ML, Popovych N, Chapman MR (2013) Ramamoorthy, A., Bacterial curli protein promotes the conversion of PAP248-286 into the amyloid SEVI: cross-seeding of dissimilar amyloid sequences. PeerJ 1:e5CrossRefGoogle Scholar
  17. 17.
    Andreetto E, Yan L-M, Tatarek-Nossol M, Velkova A, Frank R, Kapurniotu A (2010) Identification of hot regions of the Aβ–IAPP interaction interface as high-affinity binding sites in both cross- and self-association. Ange Chem Inter Ed 49(17):3081–3085CrossRefGoogle Scholar
  18. 18.
    O’Nuallain B, Williams AD, Westermark P, Wetzel R (2004) Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 279(17):17490–17499CrossRefGoogle Scholar
  19. 19.
    Yan LM, Velkova A, Tatarek-Nossol M, Andreetto E, Kapurniotu A (2007) IAPP mimic blocks Aβ cytotoxic self-assembly: cross-suppression of amyloid toxicity of Aβ and IAPP suggests a molecular link between Alzheimer’s disease and type II diabetes. Angew Chem Int Ed 46(8):1246–1252CrossRefGoogle Scholar
  20. 20.
    Seeliger J, Evers F, Jeworrek C, Kapoor S, Weise K, Andreetto E, Tolan M, Kapurniotu A, Winter R (2012) Cross-amyloid interaction of Aβ and IAPP at lipid membranes. Angew Chem Int Ed 51(3):679–683CrossRefGoogle Scholar
  21. 21.
    Ma B, Nussinov R (2012) Selective molecular recognition in amyloid growth and transmission and cross-species barriers. J Mol Biol 421(2–3):172–184CrossRefGoogle Scholar
  22. 22.
    Hu R, Zhang M, Patel K, Wang Q, Chang Y, Gong X, Zhang G, Zheng J (2014) Cross-sequence interactions between human and rat islet amyloid polypeptides. Langmuir 30(18):5193–5201CrossRefGoogle Scholar
  23. 23.
    Hu R, Zhang M, Chen H, Jiang B, Zheng J (2015) Cross-seeding interaction between β-amyloid and human islet amyloid polypeptide. ACS Chem Neurosci 6(10):1759–1768CrossRefGoogle Scholar
  24. 24.
    Biancalana M, Makabe K, Koide A, Koide S (2009) Molecular mechanism of thioflavin-t binding to the surface of [beta]-rich peptide self-assemblies. J Mol Biol 385(4):1052–1063CrossRefGoogle Scholar
  25. 25.
    Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287(2):252–260CrossRefGoogle Scholar
  26. 26.
    Juszczyk P, Kolodziejczyk A, Grzonka Z (2005) Circular dichroism and aggregation studies of amyloid beta (11-28) fragment and its variants. Acta Biochim Pol 52(2):425PubMedGoogle Scholar
  27. 27.
    Wang Q, Yu X, Patal K, Hu R, Chuang S, Zhang G, Zheng J (2013) Tanshinones inhibit amyloid aggregation by amyloid-β peptide, disaggregate amyloid fibrils, and protect cultured cells. ACS Chem Neurosci 4(6):1004–1015CrossRefGoogle Scholar
  28. 28.
    Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Doeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc Natl Acad Sci U S A 102(48):17342–17347CrossRefGoogle Scholar
  29. 29.
    Luca S, Yau WM, Leapman R, Tycko R (2007) Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 46(47):13505–13522CrossRefGoogle Scholar
  30. 30.
    Zhang MZ, Hu RD, Chen H, Gong X, Zhou FM, Zhang L, Zheng J (2015) Polymorphic associations and structures of the cross-seeding of A beta(1-42) and hIAPP(1-37) polypeptides. J Chem Inf Model 55(8):1628–1639CrossRefGoogle Scholar
  31. 31.
    Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718CrossRefGoogle Scholar
  32. 32.
    Buck M, Bouguet-Bonnet S, Pastor RW, MacKerell AD (2006) Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophys J 90(4):L36–L38CrossRefGoogle Scholar
  33. 33.
    Yu X, Zheng J (2011) Polymorphic structures of Alzheimer’s β-amyloid globulomers. PLoS One 6(6):e20575CrossRefGoogle Scholar
  34. 34.
    Zhao J, Hu R, Sciacca MFM, Brender JR, Chen H, Ramamoorthy A, Zheng J (2014) Non-selective ion channel activity of polymorphic human islet amyloid polypeptide (amylin) double channels. Phys Chem Chem Phys 16(6):2368–2377CrossRefGoogle Scholar
  35. 35.
    Zhang MZ, Hu RD, Liang GZ, Chang Y, Sun Y, Peng ZM, Zheng J (2014) Structural and energetic insight into the cross-seeding amyloid assemblies of Human IAPP and Rat IAPP. J Phys Chem B 118(25):7026–7036CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Baiping Ren
    • 1
  • Rundong Hu
    • 1
  • Mingzhen Zhang
    • 1
  • Yonglan Liu
    • 1
  • Lijian Xu
    • 1
    • 2
  • Binbo Jiang
    • 1
    • 3
  • Jie Ma
    • 1
    • 4
  • Buyong Ma
    • 5
  • Ruth Nussinov
    • 5
    • 6
  • Jie Zheng
    • 1
  1. 1.Department of Chemical & Biomolecular EngineeringThe University of AkronAkronUSA
  2. 2.College of Life Sciences and Chemistry Hunan University of TechnologyZhuzhouChina
  3. 3.College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
  4. 4.State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and EngineeringTongji UniversityShanghaiChina
  5. 5.Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation ProgramNational Cancer InstituteFrederickUSA
  6. 6.Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations