Skip to main content

RNA-Directed Assembly of Tobacco Mosaic Virus (TMV)-Like Carriers with Tunable Fractions of Differently Addressable Coat Proteins

  • Protocol
  • First Online:
Virus-Derived Nanoparticles for Advanced Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1776))

Abstract

Taking advantage of the ability for in vitro assembly of the plant-infecting virus tobacco mosaic virus (TMV), rod-shaped nanoscale scaffolds presenting different addressable groups can be obtained. We have established procedures resulting in virus-like particles with randomly distributed functional groups, with different groups arranged in striped but randomized structures, and even with distinct groups clustered in adjacent, better-defined domains. The TMV coat protein (CP) variants combined in these approaches can either originate all from TMV mutants propagated in planta, or be mixed with CP expressed in E. coli (CPEc). Protocols for expression and purification of a CPEc-His6 mutant in E. coli as well as the different methods for in vitro assembly and the visualization by decoration of one CP type are explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan XZ, Pomerantseva E, Gnerlich M, Brown A, Gerasopoulos K, McCarthy M, Culver J, Ghodssi R (2013) Tobacco mosaic virus: a biological building block for micro/nano/bio systems. J Vac Sci Technol A 31(5):050815. https://doi.org/10.1116/1.4816584

    Article  CAS  Google Scholar 

  2. Altintoprak K, Seidenstücker A, Welle A, Eiben S, Atanasova P, Stitz N, Plettl A, Bill J, Gliemann H, Jeske H, Rothenstein D, Geiger F, Wege C (2015) Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition. Beilstein J Nanotechnol 6:1399–1412. https://doi.org/10.3762/bjnano.6.145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11(3):253–256. https://doi.org/10.1002/(Sici)1521-4095(199903)11:3<253::Aid-Adma253>3.0.Co;2-7

    Article  CAS  Google Scholar 

  4. Knez M, Bittner AM, Boes F, Wege C, Jeske H, Maiss E, Kern K (2003) Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Lett 3(8):1079–1082. https://doi.org/10.1021/nl0342545

    Article  CAS  Google Scholar 

  5. Zhou K, Zhang J, Wang Q (2015) Site-selective nucleation and controlled growth of gold nanostructures in tobacco mosaic virus nanotubulars. Small 11(21):2505–2509. https://doi.org/10.1002/smll.201401512

    Article  PubMed  CAS  Google Scholar 

  6. Geiger FC, Eber FJ, Eiben S, Mueller A, Jeske H, Spatz JP, Wege C (2013) TMV nanorods with programmed longitudinal domains of differently addressable coat proteins. Nanoscale 5(9):3808–3816. https://doi.org/10.1039/c3nr33724c

    Article  PubMed  CAS  Google Scholar 

  7. Holder PG, Finley DT, Stephanopoulos N, Walton R, Clark DS, Francis MB (2010) Dramatic thermal stability of virus-polymer conjugates in hydrophobic solvents. Langmuir 26(22):17383–17388. https://doi.org/10.1021/la1039305

    Article  PubMed  CAS  Google Scholar 

  8. Koch C, Wabbel K, Eber FJ, Krolla-Sidenstein P, Azucena C, Gliemann H, Eiben S, Geiger F, Wege C (2015) Modified TMV particles as beneficial scaffolds to present sensor enzymes. Front Plant Sci 6:1137. https://doi.org/10.3389/fpls.2015.01137

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bäcker M, Koch C, Eiben S, Geiger F, Eber F, Gliemann H, Poghossian A, Wege C, Schöning MJ (2017) Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors. Sensors Actuators B Chem 238:716–722. https://doi.org/10.1016/j.snb.2016.07.096

    Article  CAS  Google Scholar 

  10. Koch C, Eber FJ, Azucena C, Forste A, Walheim S, Schimmel T, Bittner AM, Jeske H, Gliemann H, Eiben S, Geiger FC, Wege C (2016) Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies. Beilstein J Nanotechnol 7:613–629. https://doi.org/10.3762/bjnano.7.54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Fraenkel-Conrat H, Williams RC (1955) Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc Natl Acad Sci U S A 41(10):690–698. https://doi.org/10.1073/pnas.41.10.690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Butler PJ (1999) Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed. Philos Trans R Soc Lond Ser B Biol Sci 354(1383):537–550. https://doi.org/10.1098/rstb.1999.0405

    Article  CAS  Google Scholar 

  13. Kegel WK, van der Schoot P (2006) Physical regulation of the self-assembly of tobacco mosaic virus coat protein. Biophys J 91(4):1501–1512. https://doi.org/10.1529/biophysj.105.072603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wu ZY, Mueller A, Degenhard S, Ruff SE, Geiger F, Bittner AM, Wege C, Krill CE (2010) Enhancing the magnetoviscosity of ferrofluids by the addition of biological nanotubes. ACS Nano 4(8):4531–4538. https://doi.org/10.1021/nn100645e

    Article  PubMed  CAS  Google Scholar 

  15. Eber FJ, Eiben S, Jeske H, Wege C (2015) RNA-controlled assembly of tobacco mosaic virus-derived complex structures: from nanoboomerangs to tetrapods. Nanoscale 7(1):344–355. https://doi.org/10.1039/c4nr05434b

    Article  PubMed  CAS  Google Scholar 

  16. Eber FJ, Eiben S, Jeske H, Wege C (2013) Bottom-up-assembled nanostar colloids of gold cores and tubes derived from tobacco mosaic virus. Angew Chem Int Edit 52(28):7203–7207. https://doi.org/10.1002/anie.201300834

    Article  CAS  Google Scholar 

  17. Kadri A, Maiss E, Amsharov N, Bittner AM, Balci S, Kern K, Jeske H, Wege C (2011) Engineered tobacco mosaic virus mutants with distinct physical characteristics in planta and enhanced metallization properties. Virus Res 157(1):35–46

    Article  CAS  PubMed  Google Scholar 

  18. Eiben S, Stitz N, Eber F, Wagner J, Atanasova P, Bill J, Wege C, Jeske H (2014) Tailoring the surface properties of tobacco mosaic virions by the integration of bacterially expressed mutant coat protein. Virus Res 180:92–96. https://doi.org/10.1016/j.virusres.2013.11.019

    Article  PubMed  CAS  Google Scholar 

  19. Gerasopoulos K, McCarthy M, Royston E, Culver JN, Ghodssi R (2008) Nanostructured nickel electrodes using the tobacco mosaic virus for microbattery applications. J Micromech Microeng 18(10):104003. https://doi.org/10.1088/0960-1317/18/10/104003

    Article  CAS  Google Scholar 

  20. Schneider A, Eber FJ, Wenz NL, Altintoprak K, Jeske H, Eiben S, Wege C (2016) Dynamic DNA-controlled “stop-and-go” assembly of well-defined protein domains on RNA-scaffolded TMV-like nanotubes. Nanoscale 8(47):19853–19866

    Article  CAS  PubMed  Google Scholar 

  21. Green MR, Sambrook J (2012) Molecular cloning. A laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  22. Gooding GV, Hebert TT (1967) A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology 57:1285

    PubMed  Google Scholar 

  23. Fraenkel-Conrat H (1957) Degradation of tobacco mosaic virus with acetic acid. Virology 4(1):1–4

    Article  CAS  PubMed  Google Scholar 

  24. Chapman SN (1998) Tobamovirus isolation and RNA extraction. Methods Mol Biol 81:123–129. https://doi.org/10.1385/0-89603-385-6:123

    Article  PubMed  CAS  Google Scholar 

  25. Richards KE, Williams RC (1972) Assembly of tobacco mosaic virus in vitro: effect of state of polymerization of the protein component. Proc Natl Acad Sci U S A 69(5):1121–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bruckman MA, Soto CM, McDowell H, Liu JL, Ratna BR, Korpany KV, Zahr OK, Blum AS (2011) Role of hexahistidine in directed nanoassemblies of tobacco mosaic virus coat protein. ACS Nano 5(3):1606–1616

    Article  CAS  PubMed  Google Scholar 

  27. Hwang DJ, Roberts IM, Wilson TMA (1994) Expression of tobacco mosaic virus coat protein and assembly of pseudovirus particles in Escherichia coli. Proc Natl Acad Sci U S A 91(19):9067–9071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to thank Fania Geiger and Fabian Eber for establishing the protocols for sequential assembly and decoration of TMV, respectively. I am also grateful for the work of Diether Gotthardt, our gardener, and Sigrid Kober for taking care of the plants and virus isolations. Special thanks to Holger Jeske and Christina Wege for their great support and without whom there would be no plant virus nanotechnology in Stuttgart. This work was financed in part by the DFG PAK 410 and SPP1569, the Zeiss foundation, “Projekthaus” NanoBioMater as well as the Baden Württemberg Stiftung in the course of the Network of Competence “Functional Nanostructures.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Eiben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eiben, S. (2018). RNA-Directed Assembly of Tobacco Mosaic Virus (TMV)-Like Carriers with Tunable Fractions of Differently Addressable Coat Proteins. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics