Skip to main content

Interactions Between Plant Viral Nanoparticles (VNPs) and Blood Plasma Proteins, and Their Impact on the VNP In Vivo Fates

  • Protocol
  • First Online:
Virus-Derived Nanoparticles for Advanced Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1776))

Abstract

Plant viral nanoparticles (VNPs) are currently being developed as novel vessels for delivery of diagnostic and therapeutic cargos to sites of disease. With a rapid increase in the number of VNP variants and their potential applications in nanomedicine, the properties they acquire in the bloodstream need to be investigated. Biomolecules present in plasma are known to adsorb onto the surface of nanomaterials (including VNPs), forming a biointerface called the protein corona, which is capable of reprogramming the properties of VNPs. Here we describe a few general methods to isolate and study the VNP–protein corona complexes, in order to evaluate the impact of protein corona on molecular recognition of VNPs by target cells, and clearance by phagocytes. We outline procedures for in vivo screening of VNP fates in a mouse model, which may be useful for evaluation of efficacy and biocompatibility of different VNP based formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koudelka KJ, Pitek AS, Manchester M, Steinmetz NF (2015) Virus-based nanoparticles as versatile nanomachines. Annu Rev Virol 2:379–401. https://doi.org/10.1146/annurev-virology-100114-055141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Steinmetz NF (2013) Viral nanoparticles in drug delivery and imaging. Mol Pharm 10:1–2. https://doi.org/10.1021/mp300658j

    Article  PubMed  CAS  Google Scholar 

  3. Cho C-F, Shukla S, Simpson EJ, Steinmetz NF, Luyt LG, Lewis JD (2014) Molecular targeted viral nanoparticles as tools for imaging cancer. Methods Mol Biol 1108:211–230. https://doi.org/10.1007/978-1-62703-751-8_16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Brasch M, la Escosura de A, Ma Y, Uetrecht C, Heck AJR, Torres T, Cornelissen JJLM (2011) Encapsulation of phthalocyanine supramolecular stacks into virus-like particles. J Am Chem Soc 133:6878–6881. https://doi.org/10.1021/ja110752u

    Article  CAS  PubMed  Google Scholar 

  5. Douglas T, Young M (1998) Host–guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155. https://doi.org/10.1038/30211

    Article  CAS  Google Scholar 

  6. Steinmetz NF, Hong V, Spoerke ED, Lu P, Breitenkamp K, Finn MG, Manchester M (2009) Buckyballs meet viral nanoparticles: candidates for biomedicine. J Am Chem Soc 131:17093–17095. https://doi.org/10.1021/ja902293w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wen AM, Wang Y, Jiang K, Hsu GC, Gao H, Lee KL, Yang AC, Yu X, Simon DI, Steinmetz NF (2015) Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging. J Mater Chem B Mater Biol Med 3:6037–6045. https://doi.org/10.1039/C5TB00879D

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760. https://doi.org/10.1038/nnano.2007.387

    Article  PubMed  CAS  Google Scholar 

  9. Shukla S, Wen AM, Ayat NR, Commandeur U, Gopalkrishnan R, Broome A-M, Lozada KW, Keri RA, Steinmetz NF (2014) Biodistribution and clearance of a filamentous plant virus in healthy and tumor-bearing mice. Nanomedicine (Lond) 9:221–235. https://doi.org/10.2217/nnm.13.100

    Article  CAS  Google Scholar 

  10. Cole JT, Holland NB (2015) Multifunctional nanoparticles for use in theranostic applications. Drug Deliv Transl Res 5:295–309. https://doi.org/10.1007/s13346-015-0218-2

    Article  PubMed  CAS  Google Scholar 

  11. Bruckman MA, Steinmetz NF (2014) Chemical modification of the inner and outer surfaces of tobacco mosaic virus (TMV). Methods Mol Biol 1108:173–185. https://doi.org/10.1007/978-1-62703-751-8_13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Walczyk D, Baldelli Bombelli F, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768. https://doi.org/10.1021/ja910675v

    Article  PubMed  CAS  Google Scholar 

  13. Monopoli MP, Baldelli Bombelli F, Dawson KA (2011) Nanobiotechnology: nanoparticle coronas take shape. Nat Nanotechnol 6:11–12. https://doi.org/10.1038/nnano.2011.267

    Article  PubMed  CAS  Google Scholar 

  14. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Baldelli Bombelli F, Hristov DR, Kelly PM, Åberg C, Mahon E, Dawson KA (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–143. https://doi.org/10.1038/nnano.2012.237

    Article  PubMed  CAS  Google Scholar 

  15. Pitek AS, Wen AM, Shukla S, Steinmetz NF (2016) The protein corona of plant virus nanoparticles influences their dispersion properties, cellular interactions, and in vivo fates. Small 12:1758–1769. https://doi.org/10.1002/smll.201502458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Monopoli MP, Pitek AS, Lynch I, Dawson KA (2013) Formation and characterization of the nanoparticle-protein corona. Methods Mol Biol 1025:137–155

    Article  CAS  PubMed  Google Scholar 

  17. Pitek AS, O'Connell D, Mahon E, Monopoli MP, Baldelli Bombelli F, Dawson KA (2012) Transferrin coated nanoparticles: study of the bionano interface in human plasma. PLoS One 7:e40685. https://doi.org/10.1371/journal.pone.0040685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Pitek AS, Jameson SA, Veliz FA, Shukla S, Steinmetz NF (2016) Serum albumin “camouflage” of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials 89:89–97. https://doi.org/10.1016/j.biomaterials.2016.02.032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lee KL, Shukla S, Wu M, Ayat NR, Sanadi El CE, Wen AM, Edelbrock JF, Pokorski JK, Commandeur U, Dubyak GR, Steinmetz NF (2015) Stealth filaments: polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X. Acta Biomater 19:166–179. https://doi.org/10.1016/j.actbio.2015.03.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Rai AJ, Gelfand CA, Haywood BC, Warunek DJ, Yi J, Schuchard MD, Mehigh RJ, Cockrill SL, Scott GBI, Tammen H, Schulz-Knappe P, Speicher DW, Vitzthum F, Haab BB, Siest G, Chan DW (2005) HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5:3262–3277. https://doi.org/10.1002/pmic.200401245

    Article  PubMed  CAS  Google Scholar 

  21. Dell’Orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S (2010) Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One 5:e10949. https://doi.org/10.1371/journal.pone.0010949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes VF (2011) Hardening of the nanoparticle-protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small 7:3479–3486. https://doi.org/10.1002/smll.201101511

    Article  PubMed  CAS  Google Scholar 

  23. Kelly PM, Åberg C, Polo E, O’Connell A, Cookman J, Fallon J, Krpetić Ž, Dawson KA (2015) Mapping protein binding sites on the biomolecular corona of nanoparticles. Nat Nanotechnol 10:472–479. https://doi.org/10.1038/nnano.2015.47

    Article  PubMed  CAS  Google Scholar 

  24. Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–5857. https://doi.org/10.1021/nn300223w

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a grant from the National Science Foundation CAREER DMR 1452257 (to NFS) and grants from the National Institute of Health (NIH): NHLBI R21 HL121130 (to NFS) and a pilot grant from Case-Coulter Translational Research Partnership and the Harrington Heart & Vascular Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole F. Steinmetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pitek, A.S., Veliz, F.A., Jameson, S.A., Steinmetz, N.F. (2018). Interactions Between Plant Viral Nanoparticles (VNPs) and Blood Plasma Proteins, and Their Impact on the VNP In Vivo Fates. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_38

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics