Skip to main content

In Vivo Packaging of Protein Cargo Inside of Virus-Like Particle P22

  • Protocol
  • First Online:
Virus-Derived Nanoparticles for Advanced Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1776))

Abstract

Protein cages are ubiquitous in nature and have been manipulated to encapsulate a range of nonnative cargos including organic, inorganic, and small molecules. Many protein cages are derived from virus capsids that have been rendered noninfectious through the preferential production and use of proteins that are solely involved in capsid assembly, but which do not encapsulate genetic material and therefore do not contribute to infectivity. Here, we describe the production of protein cargo(s) encapsulated inside of P22 virus-like particles (VLPs), derived from bacteriophage P22. This is achieved via genetic fusion of the cargo to a scaffolding protein, which becomes encapsulated in the P22 VLP during templated assembly of the protein cage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393(6681):152–155. https://doi.org/10.1038/30211

    Article  CAS  Google Scholar 

  2. Khudyakov Y, Pumpens P (eds) (2016) Viral Nanotechnology. CRC Press, Boca Raton, FL

    Google Scholar 

  3. Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312(5775):873–875. https://doi.org/10.1126/science.1123223

    Article  PubMed  CAS  Google Scholar 

  4. Prevelige PE, Thomas D, King J (1988) Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. J Mol Biol 202(4):743–757. https://doi.org/10.1016/0022-2836(88)90555-4

    Article  PubMed  CAS  Google Scholar 

  5. Parker MH, Casjens S, Prevelige PE (1998) Functional domains of bacteriophage P22 scaffolding protein. J Mol Biol 281(1):69–79. https://doi.org/10.1006/jmbi.1998.1917

    Article  PubMed  CAS  Google Scholar 

  6. O'Neil A, Reichhardt C, Johnson B, Prevelige PE, Douglas T (2011) Genetically programmed in vivo packaging of protein cargo and its controlled release from bacteriophage P22. Angewandte Chemie-International Edition 50(32):7425–7428. https://doi.org/10.1002/anie.201102036

    Article  PubMed  CAS  Google Scholar 

  7. Qazi S, Miettinen HM, Wilkinson RA, McCoy K, Douglas T, Wiedenheft B (2016) Programmed self-assembly of an active P22-Cas9 nanocarrier system. Mol Pharm 13(3):1191–1196. https://doi.org/10.1021/acs.molpharmaceut.5b00822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jordan PC, Patterson DP, Saboda KN, Edwards EJ, Miettinen HM, Basu G, Thielges MC, Douglas T (2016) Self-assembling biomolecular catalysts for hydrogen production. Nat Chem 8(2):179–185. https://doi.org/10.1038/nchem.2416

    Article  PubMed  CAS  Google Scholar 

  9. O'Neil A, Prevelige PE, Douglas T (2013) Stabilizing viral nano-reactors for nerve-agent degradation. Biomater Sci 1(8):881–886. https://doi.org/10.1039/c3bm60063g

    Article  CAS  PubMed  Google Scholar 

  10. Patterson DP, McCoy K, Fijen C, Douglas T (2014) Constructing catalytic antimicrobial nanoparticles by encapsulation of hydrogen peroxide producing enzyme inside the P22 VLP. J Mater Chem B 2(36):5948–5951. https://doi.org/10.1039/c4tb00983e

    Article  CAS  PubMed  Google Scholar 

  11. Patterson DP, Schwarz B, Waters RS, Gedeon T, Douglas T (2014) Encapsulation of an enzyme cascade within the bacteriophage P22 virus-like particle. ACS Chem Biol 9(2):359–365. https://doi.org/10.1021/cb4006529

    Article  PubMed  CAS  Google Scholar 

  12. Schwarz B, Madden P, Avera J, Gordon B, Larson K, Miettinen HM, Uchida M, LaFrance B, Basu G, Rynda-Apple A, Douglas T (2015) Symmetry controlled, genetic presentation of bioactive proteins on the P22 virus-like particle using an external decoration protein. ACS Nano 9(9):9134–9147. https://doi.org/10.1021/acsnano.5b03360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–U341. https://doi.org/10.1038/nmeth.1318

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kimberly McCoy or Trevor Douglas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McCoy, K., Douglas, T. (2018). In Vivo Packaging of Protein Cargo Inside of Virus-Like Particle P22. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics