Skip to main content

Nanowires and Nanoparticle Chains Inside Tubular Viral Templates

  • Protocol
  • First Online:
Virus-Derived Nanoparticles for Advanced Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1776))

Abstract

One-dimensional (1D) inorganic nanomaterials, especially with magnetic and optical properties, are key components in material synthesis for applications in nanoelectronics, catalysis, and sensing. To achieve these objectives, tubular viral templates are emerging as natural anisotropic bioreactors for the control of the synthesis of inorganic materials with spatial confinement. In particular, tobacco mosaic virus (TMV) with a longitudinal cylinder shape provides a defined narrow cavity to direct the controllable synthesis of 1D inorganic nanomaterial. Based on the understanding of biological characteristics of viral capsids, we can introduce genetic modifications to tailor the arrangement of functional motifs for specific electroless deposition. Here we present an overview of methods for the utilization of the TMV-derived interior surface to realize spatially selective chemisorption, nucleation, and growth of nanocrystals into nanowires and nanoparticle chains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nudelman F, Sommerdijk NAJM (2012) Biomineralization as an inspiration for materials chemistry. Angew Chem Int Ed 51(27):6582–6596

    Article  CAS  Google Scholar 

  2. Sotiropoulou S, Sierra-Sastre Y, Mark SS, Batt CA (2008) Biotemplated nanostructured materials. Chem Mater 20(3):821–834

    Article  CAS  Google Scholar 

  3. Sun W, Boulais E, Hakobyan Y, Wang WL, Guan A, Bathe M, Yin P (2014) Casting inorganic structures with DNA molds. Science 346(6210):1258361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19(8):1025–1042

    Article  CAS  Google Scholar 

  5. Dickerson MB, Sandhage KH, Naik RR (2008) Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 108(11):4935–4978

    Article  CAS  PubMed  Google Scholar 

  6. Boi Hoa S, Sungsu K, Hyun MS, Hyunjoo L, Duk-Young J, Kyeong Kyu K (2011) Platinum nanoparticles encapsulated by aminopeptidase: a multifunctional bioinorganic nanohybrid catalyst. Angew Chem Int Ed 50(50):11924–11929

    Article  CAS  Google Scholar 

  7. Chuanbin M, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Andrew H, George G, Brent I, Belcher AM (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303(5655):213–217

    Article  CAS  Google Scholar 

  8. Young M, Willits D, Uchida M, Douglas T (2008) Plant viruses as biotemplates for materials and their use in nanotechnology. Annu Rev Phytopathol 46:361–384

    Article  CAS  PubMed  Google Scholar 

  9. Flynn CE, Lee SW, Peelle BR, Belcher AM (2003) Viruses as vehicles for growth, organization and assembly of materials. Acta Mater 51(19):5867–5880

    Article  CAS  Google Scholar 

  10. Sun J, DuFort C, Daniel MC, Murali A, Chen C, Gopinath K, Stein B, De M, Rotello VM, Holzenburg A, Kao CC, Dragnea B (2007) Core-controlled polymorphism in virus-like particles. Proc Natl Acad Sci U S A 104(4):1354–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tseng RJ, Tsai C, Ma L, Ouyang J, Ozkan CS, Yang Y (2006) Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat Nanotechnol 1(1):72–77

    Article  CAS  PubMed  Google Scholar 

  12. Niu Z, Liu J, Lee LA, Bruckman MA, Zhao D, Koley G, Wang Q (2007) Biological templated synthesis of water-soluble conductive polymeric nanowires. Nano Lett 7(12):3729–3733

    Article  CAS  PubMed  Google Scholar 

  13. Wayne S, Trevor D, Mark Y, Gerald S, Stephen M (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11(3):253–256

    Article  Google Scholar 

  14. Knez M, Sumser M, Bittner AM, Wege C, Jeske H, Martin TP, Kern K (2004) Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv Funct Mater 14(2):116–124

    Article  CAS  Google Scholar 

  15. Dujardin E, Peet C, Stubbs G, Culver JN, Mann S (2003) Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3(3):413–417

    Article  CAS  Google Scholar 

  16. Wu Z, Mueller A, Degenhard S, Ruff SE, Geiger F, Bittner AM, Wege C, Krill CE (2010) Enhancing the magnetoviscosity of ferrofluids by the addition of biological nanotubes. ACS Nano 4(8):4531–4538

    Article  CAS  PubMed  Google Scholar 

  17. Lim JS, Kim SM, Lee SY, Stach EA, Culver JN, Harris MT (2010) Biotemplated aqueous-phase palladium crystallization in the absence of external reducing agents. Nano Lett 10(10):3863–3867

    Article  CAS  PubMed  Google Scholar 

  18. Górzny MŁ, Walton AS, Evans SD (2010) Synthesis of high-surface-area platinum nanotubes using a viral template. Adv Funct Mater 20(8):1295–1300

    Article  CAS  Google Scholar 

  19. Yang C, Choi CH, Lee CS, Yi H (2013) A facile synthesis-fabrication strategy for integration of catalytically active viral-palladium nanostructures into polymeric hydrogel microparticles via replica molding. ACS Nano 7(6):5032–5044

    Article  CAS  PubMed  Google Scholar 

  20. Chen X, Gerasopoulos K, Guo J, Brown A, Wang C, Ghodssi R, Culver JN (2010) Virus-enabled silicon anode for lithium-ion batteries. ACS Nano 4(9):5366–5372

    Article  CAS  PubMed  Google Scholar 

  21. Atanasova P, Rothenstein D, Schneider JJ, Hoffmann RC, Dilfer S, Eiben S, Wege C, Jeske H, Bill J (2011) Virus-templated synthesis of ZnO nanostructures and formation of field-effect transistors. Adv Mater 23(42):4918–4922

    Article  CAS  PubMed  Google Scholar 

  22. Knez M, Bittner AM, Boes F, Wege C, Jeske H, Maiβ E, Kern K (2003) Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Lett 3(8):1079–1082

    Article  CAS  Google Scholar 

  23. Kobayashi M, Seki M, Tabata H, Watanabe Y, Yamashita I (2010) Fabrication of aligned magnetic nanoparticles using tobamoviruses. Nano Lett 10(3):773–776

    Article  CAS  PubMed  Google Scholar 

  24. Zhou K, Li F, Dai G, Meng C, Wang QB (2013) Disulfide bond: dramatically enhanced assembly capability and structural stability of tobacco mosaic virus nanorods. Biomacromolecules 14(8):2593–2600

    Article  CAS  PubMed  Google Scholar 

  25. Zhou K, Zhang JT, Wang QB (2015) Site-selective nucleation and controlled growth of gold nanostructures in tobacco mosaic virus nanotubulars. Small 11(21):2505–2509

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangbin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhou, K., Wang, Q. (2018). Nanowires and Nanoparticle Chains Inside Tubular Viral Templates. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics