Skip to main content

Self-Assembly of Rod-Like Bionanoparticles at Interfaces and in Solution

  • 1816 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 1776)

Abstract

Rod-like nanoparticles show unique self-assembly behavior benefiting from their anisotropic properties. As a classic example of a one-dimensional (1D) rod-like plant virus, tobacco mosaic virus (TMV) can either assemble in a head-to-tail manner to form 1D long fibers, or align parallel to form crystal-like structures at interfaces or in solution. Here, the self-assembly behaviors of TMV at oil–water or air–liquid interfaces are summarized. In addition, the self-assembly of TMV with polymers in solution is also discussed in this chapter.

Key words

  • Tobacco mosaic virus
  • Self-assembly
  • Interfaces
  • Polyaniline
  • Polydopamine

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7808-3_10
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7808-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Halivni S, Sitt A, Hadar I et al (2012) Effect of nanoparticle dimensionality on fluorescence resonance energy transfer in nanoparticle–dye conjugated systems. ACS Nano 6:2758–2765

    CrossRef  CAS  PubMed  Google Scholar 

  2. Zheng X, Fontana J, Pevnyi M et al (2012) The effects of nanoparticle shape and orientation on the low frequency dielectric properties of nanocomposites. J Mater Sci 47:4914–4920

    CrossRef  CAS  Google Scholar 

  3. Yang K, Ma YQ (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5:579–583

    CrossRef  CAS  PubMed  Google Scholar 

  4. Dasgupta S, Auth T, Gompper G (2014) Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett 14:687–693

    CrossRef  CAS  PubMed  Google Scholar 

  5. Shukla S, Eber FJ, Nagarajan AS et al (2015) The impact of aspect ratio on the biodistribution and tumor homing of rigid soft-matter nanorods. Adv Healthc Mater 4:874–882

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Agarwal R, Singh V, Jurney P et al (2013) Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci U S A 110:17247–17252

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Niikura K, Matsunaga T, Suzuki T et al (2013) Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 7:3926–3938

    CrossRef  CAS  PubMed  Google Scholar 

  8. Liu Y, Zhang W, Zhu Y et al (2013) Architecturing hierarchical function layers on self-assembled viral templates as 3D nano-array electrodes for integrated Li-ion microbatteries. Nano Lett 13:293–300

    CrossRef  CAS  PubMed  Google Scholar 

  9. Lin Y, Balizan E, Lee LA et al (2010) Self-assembly of rodlike bio-nanoparticles in capillary tubes. Angew Chem Int Ed 49:868–872

    CrossRef  CAS  Google Scholar 

  10. Niu Z, Bruckman M, Kotakadi VS et al (2006) Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. Chem Commun:3019–3021

    Google Scholar 

  11. Niu Z, Liu J, Lee LA et al (2007) Biological templated synthesis of water-soluble conductive polymeric nanowires. Nano Lett 7:3729–3733

    CrossRef  CAS  PubMed  Google Scholar 

  12. Li T, Zan X, Winans RE et al (2013) Biomolecular assembly of thermoresponsive superlattices of the tobacco mosaic virus with large tunable interparticle distances. Angew Chem Int Ed Engl 52:6638–6642

    CrossRef  CAS  PubMed  Google Scholar 

  13. Liu Z, Qiao J, Niu Z et al (2012) Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Chem Soc Rev 41:6178–6194

    CrossRef  CAS  PubMed  Google Scholar 

  14. Liu Z, Gu J, Wu M et al (2012) Nonionic block copolymers assemble on the surface of protein bionanoparticle. Langmuir 28:11957–11961

    CrossRef  CAS  PubMed  Google Scholar 

  15. Wu M, Shi J, Fan D et al (2013) Biobehavior in normal and tumor-bearing mice of tobacco mosaic virus. Biomacromolecules 14:4032–4037

    CrossRef  CAS  PubMed  Google Scholar 

  16. Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc 129:3104–3109

    CrossRef  CAS  PubMed  Google Scholar 

  17. Miller RA, Stephanopoulos N, McFarland JM et al (2010) Impact of assembly state on the defect tolerance of TMV-based light harvesting arrays. J Am Chem Soc 132:6068–6074

    CrossRef  CAS  PubMed  Google Scholar 

  18. Chiang CY, Epstein J, Brown A et al (2012) Biological templates for antireflective current collectors for photoelectrochemical cell applications. Nano Lett 12(11):6005

    CrossRef  CAS  PubMed  Google Scholar 

  19. Kobayashi M, Seki M, Tabata H et al (2010) Fabrication of aligned magnetic nanoparticles using tobamoviruses. Nano Lett 10:773–776

    CrossRef  CAS  PubMed  Google Scholar 

  20. Lim JS, Kim SM, Lee SY et al (2010) Biotemplated aqueous-phase palladium crystallization in the absence of external reducing agents. Nano Lett 10:3863–3867

    CrossRef  CAS  PubMed  Google Scholar 

  21. Zan X, Feng S, Balizan E et al (2013) Facile method for large scale alignment of one dimensional nanoparticles and control over myoblast orientation and differentiation. ACS Nano 7:8385–8396

    CrossRef  CAS  PubMed  Google Scholar 

  22. Bruckman MA, Jiang K, Simpson EJ et al (2014) Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus. Nano Lett 14:1551–1558

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  23. He J, Niu Z, Tangirala R et al (2009) Self-assembly of tobacco mosaic virus at oil/water interfaces. Langmuir 25:4979–4987

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 Program of China (Grant No. 2013CB933800) and the National Natural Science Foundation of China (Grant No. 51173198 and 51303191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwei Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Tian, Y., Niu, Z. (2018). Self-Assembly of Rod-Like Bionanoparticles at Interfaces and in Solution. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols