Skip to main content

Scaffold-Free, Size-Controlled Three-Dimensional Culture of Rabbit Adipose-Derived Stem Cells

  • Protocol
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1773))

Abstract

Adipose-derived stem cells are capable of self-renewal and differentiation along multiple cell lineages, and have potential applications in a wide range of therapies. ASCs are commonly cultured as monolayers on tissue culture plastic, but there are indications that they may lose their cell-specific properties with time in vitro. There has been a growing interest in culturing adherent cells using three-dimensional techniques based on the understanding that growing cells on plastic surfaces cannot truly recapitulate 3D in vivo conditions. Here we describe a novel method for generating and culturing rabbit ASCs as scaffold-free 3D cell aggregates using micropatterned wells via a forced aggregation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102(Pt 2):341–351

    PubMed  CAS  Google Scholar 

  2. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650. https://doi.org/10.1002/jor.1100090504

    Article  PubMed  CAS  Google Scholar 

  3. Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV (1994) Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 134(1):277–286. https://doi.org/10.1210/endo.134.1.8275945

    Article  PubMed  CAS  Google Scholar 

  4. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238(1):265–272. https://doi.org/10.1006/excr.1997.3858

    Article  PubMed  CAS  Google Scholar 

  5. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  6. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295. https://doi.org/10.1091/mbc.E02-02-0105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. https://doi.org/10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

  8. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol 28(6):707–715

    Article  CAS  PubMed  Google Scholar 

  9. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22(5):675–682. https://doi.org/10.1634/stemcells.22-5-675

    Article  PubMed  CAS  Google Scholar 

  10. Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF (2005) Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 5(12):1571–1584. https://doi.org/10.1517/14712598.5.12.1571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Baharvand H, Hashemi SM, Shahsavani M (2008) Differentiation of human embryonic stem cells into functional hepatocyte-like cells in a serum-free adherent culture condition. Differentiation 76(5):465–477. https://doi.org/10.1111/j.1432-0436.2007.00252.x

    Article  PubMed  CAS  Google Scholar 

  12. Bittinger F, Brochhausen C, Skarke C, Kohler H, Kirkpatrick CJ (1997) Reconstruction of peritoneal-like structure in three-dimensional collagen gel matrix culture. Exp Cell Res 236(1):155–160. https://doi.org/10.1006/excr.1997.3724

    Article  PubMed  CAS  Google Scholar 

  13. Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83(2):173–180. https://doi.org/10.1002/bit.10655

    Article  PubMed  CAS  Google Scholar 

  14. Takahashi T, Ogasawara T, Asawa Y, Mori Y, Uchinuma E, Takato T, Hoshi K (2007) Three-dimensional microenvironments retain chondrocyte phenotypes during proliferation culture. Tissue Eng 13(7):1583–1592. https://doi.org/10.1089/ten.2006.0322

    Article  PubMed  CAS  Google Scholar 

  15. Tong JZ, Sarrazin S, Cassio D, Gauthier F, Alvarez F (1994) Application of spheroid culture to human hepatocytes and maintenance of their differentiation. Biol Cell 81(1):77–81

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL (2005) In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26(34):7082–7094. https://doi.org/10.1016/j.biomaterials.2005.05.022

    Article  PubMed  CAS  Google Scholar 

  17. Timmins NE, Dietmair S, Nielsen LK (2004) Hanging-drop multicellular spheroids as a model of tumour angiogenesis. Angiogenesis 7(2):97–103. https://doi.org/10.1007/s10456-004-8911-7

    Article  PubMed  Google Scholar 

  18. Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103(5):389–398. https://doi.org/10.1263/jbb.103.389

    Article  PubMed  CAS  Google Scholar 

  19. Ungrin MD, Joshi C, Nica A, Bauwens C, Zandstra PW (2008) Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS One 3(2):e1565. https://doi.org/10.1371/journal.pone.0001565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Baraniak PR, McDevitt TC (2012) Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res 347(3):701–711. https://doi.org/10.1007/s00441-011-1215-5

    Article  PubMed  CAS  Google Scholar 

  21. Cook MM, Futrega K, Osiecki M, Kabiri M, Kul B, Rice A, Atkinson K, Brooke G, Doran M (2012) Micromarrows--three-dimensional coculture of hematopoietic stem cells and mesenchymal stromal cells. Tissue Eng Part C Methods 18(5):319–328. https://doi.org/10.1089/ten.TEC.2011.0159

    Article  PubMed  CAS  Google Scholar 

  22. Kabiri M, Kul B, Lott WB, Futrega K, Ghanavi P, Upton Z, Doran MR (2012) 3D mesenchymal stem/stromal cell osteogenesis and autocrine signalling. Biochem Biophys Res Commun 419(2):142–147. https://doi.org/10.1016/j.bbrc.2012.01.017

    Article  PubMed  CAS  Google Scholar 

  23. Markway BD, Tan GK, Brooke G, Hudson JE, Cooper-White JJ, Doran MR (2010) Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transplant 19(1):29–42. https://doi.org/10.3727/096368909X478560

    Article  PubMed  Google Scholar 

  24. Rodbell M (1966) Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium Perfringens Alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem 241(1):130–139

    PubMed  CAS  Google Scholar 

  25. Rettinger CL, Fourcaudot AB, Hong SJ, Mustoe TA, Hale RG, Leung KP (2014) In vitro characterization of scaffold-free three-dimensional mesenchymal stem cell aggregates. Cell Tissue Res 358(2):395–405. https://doi.org/10.1007/s00441-014-1939-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Army Medical Research and Material Command (W81XWH-10-2-0054).

Disclaimers

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or reflecting the views of the Department of Defense or US Government. One of the authors (KPL) is an employee of the US Government, and this work was prepared as part of his official duties.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Rettinger, C.L., Leung, K.P., Chan, R.K. (2018). Scaffold-Free, Size-Controlled Three-Dimensional Culture of Rabbit Adipose-Derived Stem Cells. In: Bunnell, B.A., Gimble, J.M. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 1773. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7799-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7799-4_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7797-0

  • Online ISBN: 978-1-4939-7799-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics