Skip to main content

Soft Tissue Reconstruction

  • Protocol
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1773))

Abstract

Autologous fat transplantation has revolutionized soft tissue reconstruction, but conventional methods remain unpredictable as graft resorption rates are high due to lack of vascularization. The advent of adipose-derived stem cells (ASCs) has led to improvement of fat grafting outcomes, in part to their ability to undergo facile differentiation into adipose tissue, their angiogenic properties, and their ability to express and secrete multiple growth factors. This chapter discusses the isolation and characterization of human ASCs, its expansion in vitro, and relevant in vivo models for adipose tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tagliacozzi G. De curtorum chirurgia per insitionem, libri duo. In quibus ea omnia, quae ad hujus chirurgiae, narium scilicet, aurium, ac labiorum per insitionem restaurandorum cum theoricen, tum practicen pertinere videbantur, clarissima methodo cumulatissime declarantur. Additis cutis traducis instrumentorum omnium, atque deligationum iconibus, & tabulis. 1597, Venetiis: Apud Gasparem Bindonum, juniorem. 28, 94, 95, 47, 32 p

    Google Scholar 

  2. Finch GD, Dawe CJ (2003) Hemiatrophy. J Pediatr Orthop 23(1):99–101

    PubMed  CAS  Google Scholar 

  3. Baudinne P, Bovy GL, Wasterlain A (1967) A case of Poland’s syndrome. Acta Paediatr Belg 21(5):407–410

    PubMed  CAS  Google Scholar 

  4. Mirzabeigi MN et al (2015) Predicting and managing donor-site wound complications in abdominally based free flap breast reconstruction: improved outcomes with early reoperative closure. Plast Reconstr Surg 135(1):14–23

    Article  CAS  PubMed  Google Scholar 

  5. Vega S et al (2008) 500 Consecutive patients with free TRAM flap breast reconstruction: a single surgeon’s experience. Plast Reconstr Surg 122(2):329–339

    Article  CAS  PubMed  Google Scholar 

  6. Tsoi B et al (2014) Safety of tissue expander/implant versus autologous abdominal tissue breast reconstruction in postmastectomy breast cancer patients: a systematic review and meta-analysis. Plast Reconstr Surg 133(2):234–249

    Article  CAS  PubMed  Google Scholar 

  7. Khouri RK et al (1998) A prospective study of microvascular free-flap surgery and outcome. Plast Reconstr Surg 102(3):711–721

    Article  CAS  PubMed  Google Scholar 

  8. Kling RE et al (2013) Trends in autologous fat grafting to the breast: a national survey of the american society of plastic surgeons. Plast Reconstr Surg 132(1):35–46

    Article  CAS  PubMed  Google Scholar 

  9. Neuber F (1893) Fettransplantation. Bericht uber die Verhandlungen der Deutscht Gesellsch Chir 22:66

    Google Scholar 

  10. Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118(3 Suppl):108S–120S

    Article  CAS  PubMed  Google Scholar 

  11. Peer L (1956) The neglected free fat graft. Plast Reconstr Surg 18:223–250

    Google Scholar 

  12. Nguyen A et al (1990) Comparative study of survival of autologous adipose tissue taken and transplanted by different techniques. Plast Reconstr Surg 85(3):378–386. discussion 387–389

    Article  CAS  PubMed  Google Scholar 

  13. Boyce RG, Nuss DW, Kluka EA (1994) The use of autogenous fat, fascia, and nonvascularized muscle grafts in the head and neck. Otolaryngol Clin North Am 27(1):39–68

    PubMed  CAS  Google Scholar 

  14. Jackson IT et al (2001) A successful long-term method of fat grafting: recontouring of a large subcutaneous postradiation thigh defect with autologous fat transplantation. Aesthetic Plast Surg 25(3):165–169

    Article  CAS  PubMed  Google Scholar 

  15. Boschert MT et al (2002) Analysis of lipocyte viability after liposuction. Plast Reconstr Surg 109(2):761–765. discussion 766–767

    Article  PubMed  Google Scholar 

  16. Rohrich RJ, Sorokin ES, Brown SA (2004) In search of improved fat transfer viability: a quantitative analysis of the role of centrifugation and harvest site. Plast Reconstr Surg 113(1):391–395. discussion 396–397

    Article  PubMed  Google Scholar 

  17. Peer LA (1955) Cell survival theory versus replacement theory. Plast Reconstr Surg 16:161–168

    Article  CAS  Google Scholar 

  18. Gonzalez AM et al (2007) An alternative method for harvest and processing fat grafts: an in vitro study of cell viability and survival. Plast Reconstr Surg 120(1):285–294

    Article  CAS  PubMed  Google Scholar 

  19. Yoshimura K et al (2008) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 32(1):48–55. discussion 56–57

    Article  PubMed  Google Scholar 

  20. Zuk PA et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gabbay JS et al (2006) Osteogenic potentiation of human adipose-derived stem cells in a 3-dimensional matrix. Ann Plast Surg 57(1):89–93

    Article  CAS  PubMed  Google Scholar 

  22. Jin X et al (2007) Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2. Biomaterials 28(19):2994–3003

    Article  CAS  PubMed  Google Scholar 

  23. Xu Y et al (2007) Analysis of the material properties of early chondrogenic differentiated adipose-derived stromal cells (ASC) using an in vitro three-dimensional micromass culture system. Biochem Biophys Res Commun 359(2):311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rangappa S et al (2003) Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg 126(1):124–132

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez LV et al (2006) Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci U S A 103(32):12167–12172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kokai LE, Rubin JP, Marra KG (2005) The potential of adipose-derived adult stem cells as a source of neuronal progenitor cells. Plast Reconstr Surg 116(5):1453–1460

    Article  CAS  PubMed  Google Scholar 

  27. Safford KM et al (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294(2):371–379

    Article  CAS  PubMed  Google Scholar 

  28. Planat-Benard V et al (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94(2):223–229

    Article  CAS  PubMed  Google Scholar 

  29. Casteilla L et al (2005) Plasticity of adipose tissue: a promising therapeutic avenue in the treatment of cardiovascular and blood diseases? Arch Mal Coeur Vaiss 98(9):922–926

    PubMed  CAS  Google Scholar 

  30. Cao Y et al (2005) Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 332(2):370–379

    Article  CAS  PubMed  Google Scholar 

  31. Rehman J et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298

    Article  PubMed  Google Scholar 

  32. Talens-Visconti R et al (2006) Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J Gastroenterol 12(36):5834–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Talens-Visconti R et al (2007) Human mesenchymal stem cells from adipose tissue: differentiation into hepatic lineage. Toxicol In Vitro 21(2):324–329

    Article  CAS  PubMed  Google Scholar 

  34. Seo MJ et al (2005) Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 328(1):258–264

    Article  CAS  PubMed  Google Scholar 

  35. Zuk PA et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    Article  CAS  PubMed  Google Scholar 

  36. Halvorsen YD et al (2001) Thiazolidinediones and glucocorticoids synergistically induce differentiation of human adipose tissue stromal cells: biochemical, cellular, and molecular analysis. Metabolism 50(4):407–413

    Article  CAS  PubMed  Google Scholar 

  37. Lee JA et al (2003) Biological alchemy: engineering bone and fat from fat-derived stem cells. Ann Plast Surg 50(6):610–617

    Article  PubMed  Google Scholar 

  38. Lu F et al (2006) Adipose tissues differentiated by adipose-derived stem cells harvested from transgenic mice. Chin J Traumatol 9(6):359–364

    PubMed  Google Scholar 

  39. Choi YS et al (2006) Adipogenic differentiation of adipose tissue derived adult stem cells in nude mouse. Biochem Biophys Res Commun 345(2):631–637

    Article  CAS  PubMed  Google Scholar 

  40. Wall ME, Bernacki SH, Loboa EG (2007) Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng 13(6):1291–1298

    Article  CAS  PubMed  Google Scholar 

  41. Fumimoto Y et al (2009) Creation of a rich subcutaneous vascular network with implanted adipose tissue-derived stromal cells and adipose tissue enhances subcutaneous grafting of islets in diabetic mice. Tissue Eng Part C Methods 15(3):437–444

    Article  CAS  PubMed  Google Scholar 

  42. Matsumoto D et al (2006) Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng 12(12):3375–3382

    Article  CAS  PubMed  Google Scholar 

  43. Cai L et al (2007) Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells 25(12):3234–3243

    Article  CAS  PubMed  Google Scholar 

  44. Yang JA et al (2010) Potential application of adipose-derived stem cells and their secretory factors to skin: discussion from both clinical and industrial viewpoints. Expert Opin Biol Ther 10(4):495–503

    Article  CAS  PubMed  Google Scholar 

  45. Zuk PA (2010) The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 21(11):1783–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee EY et al (2009) Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen 17(4):540–547

    Article  PubMed  Google Scholar 

  47. Masuda T, Furue M, Matsuda T (2004) Novel strategy for soft tissue augmentation based on transplantation of fragmented omentum and preadipocytes. Tissue Eng 10(11-12):1672–1683

    Article  CAS  PubMed  Google Scholar 

  48. Moseley TA, Zhu M, Hedrick MH (2006) Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg 118(3 Suppl):121S–128S

    Article  CAS  PubMed  Google Scholar 

  49. Lu F et al (2009) Improvement of the survival of human autologous fat transplantation by using VEGF-transfected adipose-derived stem cells. Plast Reconstr Surg 124(5):1437–1446

    Article  CAS  PubMed  Google Scholar 

  50. Zhu M et al (2010) Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Ann Plast Surg 64(2):222–228

    Article  CAS  PubMed  Google Scholar 

  51. Rubina K et al (2009) Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A 15(8):2039–2050

    Article  CAS  PubMed  Google Scholar 

  52. Rasmussen JG et al (2011) Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells. Cytotherapy 13(3):318–328

    Article  CAS  PubMed  Google Scholar 

  53. Paik KJ et al (2015) Studies in fat grafting: Part V. Cell-assisted lipotransfer to enhance fat graft retention is dose dependent. Plast Reconstr Surg 136(1):67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bliley JM, Satish L, McLaughlin MM, Kling RE, Day JD, Grahovac TL, Kokai LE, Zhang W, Marra KG, Rubin JP (2015) Imaging the stromal vascular fraction during soft tissue reconstruction. Plast Reconstr Surg 136(6):1205–1215

    Article  CAS  PubMed  Google Scholar 

  55. Yuksel E et al (2000) Increased free fat-graft survival with the long-term, local delivery of insulin, insulin-like growth factor-I, and basic fibroblast growth factor by PLGA/PEG microspheres. Plast Reconstr Surg 105(5):1712–1720

    Article  CAS  PubMed  Google Scholar 

  56. Yuksel E et al (2000) Augmentation of adipofascial flaps using the long-term local delivery of insulin and insulin-like growth factor-1. Plast Reconstr Surg 106(2):373–382

    Article  CAS  PubMed  Google Scholar 

  57. Patrick CW Jr et al (2002) Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng 8(2):283–293

    Article  CAS  PubMed  Google Scholar 

  58. Chhaya MP et al (2015) Sustained regeneration of high-volume adipose tissue for breast reconstruction using computer aided design and biomanufacturing. Biomaterials 52:551–560

    Article  CAS  PubMed  Google Scholar 

  59. Mauney JR et al (2007) Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials 28(35):5280–5290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kimura Y et al (2003) Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor. Biomaterials 24(14):2513–2521

    Article  CAS  PubMed  Google Scholar 

  61. Kawaguchi N et al (1998) De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci U S A 95(3):1062–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Toriyama K et al (2002) Endogenous adipocyte precursor cells for regenerative soft-tissue engineering. Tissue Eng 8(1):157–165

    Article  CAS  PubMed  Google Scholar 

  63. Stillaert FB et al (2010) Intrinsics and dynamics of fat grafts: an in vitro study. Plast Reconstr Surg 126(4):1155–1162

    Article  CAS  PubMed  Google Scholar 

  64. Halberstadt C et al (2002) A hydrogel material for plastic and reconstructive applications injected into the subcutaneous space of a sheep. Tissue Eng 8(2):309–319

    Article  CAS  PubMed  Google Scholar 

  65. Khorsandi L et al (2015) Three-dimensional differentiation of adipose-derived mesenchymal stem cells into insulin-producing cells. Cell Tissue Res 361(3):745–753

    Article  CAS  PubMed  Google Scholar 

  66. Choi JS et al (2009) Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J Control Release 139(1):2–7

    Article  CAS  PubMed  Google Scholar 

  67. Lee HY et al (2014) Adipose tissue regeneration in vivo using micronized acellular allogenic dermis as an injectable scaffold. Aesthetic Plast Surg 38(5):1001–1010

    Article  PubMed  Google Scholar 

  68. Khouri RK et al (2000) Nonsurgical breast enlargement using an external soft-tissue expansion system. Plast Reconstr Surg 105(7):2500–2512. discussion 2513–2514

    Article  CAS  PubMed  Google Scholar 

  69. Smith CJ, Khouri RK, Baker TJ (2002) Initial experience with the Brava nonsurgical system of breast enhancement. Plast Reconstr Surg 110(6):1593–1595. author reply 1595–1598

    Article  PubMed  Google Scholar 

  70. Khouri R. Follow up presentation on fat grafting with BRAVA non surgical breast expansion, in Annual Meeting of the American Society of Aesthetic Plastic Surgery. 2009: Vancouver, BC, Canada

    Google Scholar 

  71. Khouri RK et al (2012) Brava and autologous fat transfer is a safe and effective breast augmentation alternative: results of a 6-year, 81-patient, prospective multicenter study. Plast Reconstr Surg 129(5):1173–1187

    Article  CAS  PubMed  Google Scholar 

  72. Khouri RK et al (2014) Aesthetic applications of Brava-assisted megavolume fat grafting to the breasts: a 9-year, 476-patient, multicenter experience. Plast Reconstr Surg 133(4):796–807. discussion 808–809

    Article  CAS  PubMed  Google Scholar 

  73. Khouri RK et al (2015) Tissue-engineered breast reconstruction with Brava-assisted fat grafting: a 7-year, 488-patient, multicenter experience. Plast Reconstr Surg 135(3):643–658

    Article  CAS  PubMed  Google Scholar 

  74. Coleman SR, Saboeiro AP (2007) Fat grafting to the breast revisited: safety and efficacy. Plast Reconstr Surg 119(3):775–785. discussion 786–787

    Article  CAS  PubMed  Google Scholar 

  75. Yoshimura K et al (2008) Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg 34(9):1178–1185

    PubMed  CAS  Google Scholar 

  76. Yoshimura K et al (2010) Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications. Breast J 16(2):169–175

    Article  PubMed  Google Scholar 

  77. Kolle SF et al (2013) Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet 382(9898):1113–1120

    Article  PubMed  Google Scholar 

  78. Zocchi ML, Zuliani F (2008) Bicompartmental breast lipostructuring. Aesthetic Plast Surg 32(2):313–328

    Article  CAS  PubMed  Google Scholar 

  79. Wang H et al (2008) Sonographic assessment on breast augmentation after autologous fat graft. Plast Reconstr Surg 122(1):36e–38e

    Article  PubMed  Google Scholar 

  80. Delay E et al (2009) Fat injection to the breast: technique, results, and indications based on 880 procedures over 10 years. Aesthet Surg J 29(5):360–376

    Article  PubMed  Google Scholar 

  81. Food and Drug Administration (2014) Human cells, tissues, and cellular and tissue-based products (HCT/Ps) from adipose tissue: regulatory considerations; Draft guidance

    Google Scholar 

  82. Schipper BM et al (2008) Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 60(5):538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Aksu AE et al (2008) Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells. Ann Plast Surg 60(3):306–322

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kacey G. Marra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Egro, F., Marra, K.G. (2018). Soft Tissue Reconstruction. In: Bunnell, B.A., Gimble, J.M. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 1773. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7799-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7799-4_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7797-0

  • Online ISBN: 978-1-4939-7799-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics