Advertisement

Application of Tissue Microarray in Esophageal Adenocarcinoma

  • Nassim Saremi
  • Alfred K. Lam
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1756)

Abstract

Tissue microarray technology could allow immunohistochemical staining or in situ hybridization on hundreds of different tissue samples simultaneously. It allows faster analysis and considerably reducing costs incurred in staining. The technique also provides a high-throughput analysis of multiple tissues for the different types of research. In the literature, many researches of esophageal adenocarcinoma use tissue microarray to enhance the output. In this chapter, we have a brief overview of tissue microarray technologies, the advantages and disadvantages of tissue microarray, and related troubleshootings.

Key words

Tissue microarray TMA Esophageal adenocarcinoma Immunostaining In situ hybridization 

References

  1. 1.
    Simon R, Mirlacher M, Sauter G (2005) Tissue microarrays. Methods Mol Med 114:257–268PubMedPubMedCentralGoogle Scholar
  2. 2.
    Langer R, Von Rahden BH, Nahrig J, Von Weyhern C, Reiter R, Feith M, Stein HJ, Siewert JR, Höfler H, Sarbia M (2006) Prognostic significance of expression patterns of c-erbB-2, p53, p16INK4A, p27KIP1, cyclin D1 and epidermal growth factor receptor in esophageal adenocarcinoma: a tissue microarray study. J Clin Pathol 59:631–634CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kuester D, Dar AA, Moskaluk CC, Krueger S, Meyer F, Hartig R, Stolte M, Malfertheiner P, Lippert H, Roessner A, El-Rifai W, Schneider-Stock R (2007) Early involvement of death-associated protein kinase promoter hypermethylation in the carcinogenesis of Barrett’s esophageal adenocarcinoma and its association with clinical progression. Neoplasia 9:236–245CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Boult J, Roberts K, Brookes MJ, Hughes S, Bury JP, Cross SS, Anderson GJ, Spychal R, Iqbal T, Tselepis C (2008) Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin Cancer Res 14:379–387CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Thompson SK, Sullivan TR, Davies R, Ruszkiewicz AR (2011) Her-2/neu gene amplification in esophageal adenocarcinoma and its influence on survival. Ann Surg Oncol 18:2010–2017CrossRefGoogle Scholar
  6. 6.
    Peters JH, Zhou Z (2011) HER2 amplification, overexpression and score criteria in esophageal adenocarcinoma. Mod Pathol 24:899–907CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Storr SJ, Pu X, Davis J, Lobo D, Reece-Smith AM, Parsons SL, Madhusudan S, Martin SG (2013) Expression of the calpain system is associated with poor clinical outcome in gastro-esophageal adenocarcinomas. J Gastroenterol 48:1213–1221CrossRefPubMedGoogle Scholar
  8. 8.
    Prins MJ, Ruurda JP, Lolkema MP, Sitarz R, Ten Kate FJ, van Hillegersberg R (2015) The role of biological markers of epithelial to mesenchymal transition in esophageal adenocarcinoma, an immunohistochemical study. J Clin Pathol 68:529–535CrossRefGoogle Scholar
  9. 9.
    Stein AV, Dislich B, Blank A, Guldener L, Kröll D, Seiler CA, Langer R (2017) High intratumoural but not peritumoural inflammatory host response is associated with better prognosis in primary resected esophageal adenocarcinomas. Pathology 49:30–37CrossRefPubMedGoogle Scholar
  10. 10.
    Prins MJ, Verhage RJ, Ruurda JP, ten Kate FJ, van Hillegersberg R (2013) Over-expression of phosphorylated mammalian target of rapamycin is associated with poor survival in esophageal adenocarcinoma: a tissue microarray study. J Clin Pathol 66:224–228CrossRefPubMedGoogle Scholar
  11. 11.
    Dibb M, Han N, Choudhury J, Hayes S, Valentine H, West C, Ang YS, Sharrocks AD (2016) The FOXM1-PLK1 axis is commonly upregulated in esophageal adenocarcinoma. Br J Cancer 107:1766–1775CrossRefGoogle Scholar
  12. 12.
    Geppert CI, Rümmele P, Sarbia M, Langer R, Feith M, Morrison L, Pestova E, Schneider-Stock R, Hartmann A, Rau TT (2014) Multi-colour FISH in esophageal adenocarcinoma-predictors of prognosis independent of stage and grade. Br J Cancer 110:2985–2995CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kononen J, Bubendorf L, Kallioniemi A, Bärlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847CrossRefPubMedGoogle Scholar
  14. 14.
    Garcia JF, Camacho FI, Morente M, Fraga M, Montalbán C, Alvaro T, Bellas C, Castaño A, Díez A, Flores T, Martin C, Martinez MA, Mazorra F, Menárguez J, Mestre MJ, Mollejo M, Sáez AI, Sánchez L, Piris MA, Spanish Hodgkin Lymphoma Study Group (2002) Hodgkin’s and Reed-Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue-microarrays. Blood 12:681–689Google Scholar
  15. 15.
    Merseburger AS, Kuczyk MA, Serth J, Bokemeyer C, Young DY, Sun L, Connelly RR, McLeod DG, Mostofi FK, Srivastava SK, Stenzl A, Moul JW, Sesterhenn IA (2003) Limitations of tissue microarrays in the evaluation of focal alterations of bcl-2 and p53 in whole mount derived prostate tissues. Oncol Rep 10:223–228PubMedGoogle Scholar
  16. 16.
    Hedvat CV, Hegde A, Chaganti RS, Chen B, Qin J, Filippa DA, Nimer SD, Teruya-Feldstein J (2002) Application of tissue microarray technology to the study of non-Hodgkin's and Hodgkin’s lymphoma. Hum Pathol 33:968–974CrossRefPubMedGoogle Scholar
  17. 17.
    Natkunam Y, Warnke RA, Montgomery K, Falini B, van De Rijn M (2001) Analysis of MUM1/IRF4 protein expression using tissue microarrays and immunohistochemistry. Mod Pathol 14:686–694CrossRefPubMedGoogle Scholar
  18. 18.
    Rubin MA, Dunn R, Strawderman M, Pienta KJ (2002) Tissue microarray sampling strategy for prostate cancer biomarker analysis. Am J Surg Pathol 26:312–319CrossRefPubMedGoogle Scholar
  19. 19.
    Hoos A, Urist MJ, Stojadinovic A, Mastorides S, Dudas ME, Leung DH, Kuo D, Brennan MF, Lewis JJ, Cordon-Cardo C (2001) Validation of tissue microarrays for immunohistochemical profiling of cancer specimens using the example of human fibroblastic tumors. Am J Pathol 158:1245–1251CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Engellau J, Akerman M, Anderson H, Domanski HA, Rambech E, Alvegård TA, Nilbert M (2001) Tissue microarray technique in soft tissue sarcoma: immunohistochemical Ki-67 expression in malignant fibrous histiocytoma. Appl Immunohistochem Mol Morphol 9:358–363PubMedGoogle Scholar
  21. 21.
    Schraml P, Kononen J, Bubendorf L, Moch H, Bissig H, Nocito A, Mihatsch MJ, Kallioniemi OP, Sauter G (1999) Tissue microarrays for gene amplification surveys in many different tumor types. Clin Cancer Res 5:1966–1975PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Cancer Molecular Pathology of School of MedicineGriffith UniversityGold CoastAustralia

Personalised recommendations