Skip to main content

Directional Collective Migration in Wound Healing Assays

  • Protocol
  • First Online:
Cell Migration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1749))

Abstract

Cell migration is suppressed by confluence in a process called contact inhibition. Relieving contact inhibition upon scratching is one of the simplest ways to induce cell migration in a variety of cell types. Wound healing is probably most relevant to epithelial monolayers, because epithelial cells generally assume a barrier function, which must be restored as fast as possible by the healing process. This versatile assay, however, can also be applied to fibroblasts and to tumor cell types. Furthermore, assessing the cell response to scratch wounding requires no special equipment or reagents. It is one of the few cell migration assays, which can even be performed without videomicroscopy, since the closure of the wound can be estimated at fixed time points. Several hours after wounding, directional collective migration is easily assessed and quantified. However, cell proliferation, which is also induced by the relief of contact inhibition, is one of the confounding factors of wound healing assays that must be taken into account. A recent alternative to the scratch-induced wound is to use special inserts to seed cells into closely spaced chambers. When the insert is removed, contact inhibition is relieved, similar to the scratch-induced wound. In this chapter, we provide the protocol of the two methods and compare their advantages and disadvantages. We also provide a protocol to estimate cell proliferation upon wound healing based on the incorporation of the nucleotide analog EdU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buck S, Bradford JS, Gee K, Agnew B, Clarke S, Salic A (2008) Detection of S-phase cell cycle progression using 5-ethynyl-2′-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2′-deoxyuridine antibodies. Biotech 44:927–929

    Article  CAS  Google Scholar 

  3. Magdalena J, Millard TH, Machesky LM (2003) Microtubule involvement in NIH 3T3 Golgi and MTOC polarity establishment. J Cell Sci 116:743–756

    Article  CAS  PubMed  Google Scholar 

  4. Magdalena J, Millard TH, Etienne-Manneville S, Launay S, Warwick HK, Machesky LM (2003) Involvement of the Arp2/3 complex and Scar2 in Golgi polarity in scratch wound models. Mol Biol Cell 14:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lomakina ME, Lallemand F, Vacher S, Molinie N, Dang I, Cacheux W et al (2016) Arpin downregulation in breast cancer is associated with poor prognosis. Br J Cancer 114:545–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gorelik R, Gautreau A (2014) Quantitative and unbiased analysis of directional persistence in cell migration. Nat Protoc 9:1931–1943

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Sebastien Coste for drawing Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Molinie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Molinie, N., Gautreau, A. (2018). Directional Collective Migration in Wound Healing Assays. In: Gautreau, A. (eds) Cell Migration. Methods in Molecular Biology, vol 1749. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7701-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7701-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7700-0

  • Online ISBN: 978-1-4939-7701-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics