Skip to main content

Fluorescence-Based Methods for Characterizing RNA Interactions In Vivo

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1737))

Abstract

Fluorescence-based tools that measure RNA-RNA and RNA-protein interactions in vivo offer useful experimental approaches to probe the complex and dynamic physiological behavior of bacterial RNAs. Here we document the step-by-step design and application of two fluorescence-based methods for studying the regulatory interactions RNAs perform in vivo: (i) the in vivo RNA Structural Sensing System (iRS3) for measuring RNA accessibility and (ii) the trifluorescence complementation (TriFC) assay for measuring RNA-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vazquez-Anderson J, Contreras LM (2013) Regulatory RNAs: charming gene management styles for synthetic biology applications. RNA Biol 10(12):1778–1797. https://doi.org/10.4161/rna.27102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsai C-H, Liao R, Chou B, Palumbo M, Contreras LM (2015) Genome-wide analyses in bacteria show small-RNA enrichment for long and conserved intergenic regions. J Bacteriol 197(1):40–50. https://doi.org/10.1128/jb.02359-14

    Article  PubMed  Google Scholar 

  3. Cho SH, Lei R, Henninger TD, Contreras LM (2014) Discovery of ethanol responsive small RNAs in Zymomonas mobilis. Appl Environ Microbiol 80(14):4189–4198. https://doi.org/10.1128/aem.00429-14

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jones AJ, Venkataramanan KP, Papoutsakis T (2016) Overexpression of two stress-responsive, small, non-coding RNAs, 6S and tmRNA, imparts butanol tolerance in Clostridium acetobutylicum. FEMS Microbiol Lett 363(8):fnw063. https://doi.org/10.1093/femsle/fnw063

    Article  PubMed  Google Scholar 

  5. Sowa SW, Vazquez-Anderson J, Clark CA, De La Peña R, Dunn K, Fung EK, Khoury MJ, Contreras LM (2015) Exploiting post-transcriptional regulation to probe RNA structures in vivo via fluorescence. Nucleic Acids Res 43(2):e13. https://doi.org/10.1093/nar/gku1191

    Article  PubMed  Google Scholar 

  6. Watters KE, Abbott TR, Lucks JB (2015) Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq. Nucleic Acids Res 44(2):e12. https://doi.org/10.1093/nar/gkv879

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ignatova Z, Narberhaus F (2017) Systematic probing of the bacterial RNA structurome to reveal new functions. Curr Opin Microbiol 36:14–19. https://doi.org/10.1016/j.mib.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  8. Strobel EJ, Watters KE, Loughrey D, Lucks JB (2016) RNA systems biology: uniting functional discoveries and structural tools to understand global roles of RNAs. Curr Opin Biotechnol 39:182–191. https://doi.org/10.1016/j.copbio.2016.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garst AD, Edwards AL, Batey RT (2011) Riboswitches: structures and mechanisms. Cold Spring Harb Perspect Biol 3(6):a003533. https://doi.org/10.1101/cshperspect.a003533

    Article  PubMed  PubMed Central  Google Scholar 

  10. Takahashi MK, Watters KE, Gasper PM, Abbott TR, Carlson PD, Chen AA, Lucks JB (2016) Using in-cell SHAPE-Seq and simulations to probe structure–function design principles of RNA transcriptional regulators. RNA 22(6):920–933. https://doi.org/10.1261/rna.054916.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vazquez-Anderson J, Mihailovic MK, Baldridge KC, Reyes KG, Haning K, Cho SH, Amador P, Powell WB, Contreras LM (2017) Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions. Nucleic Acids Res 45(9):5523–5538. https://doi.org/10.1093/nar/gkx115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lim F, Peabody DS (1994) Mutations that increase the affinity of a translational repressor for RNA. Nucleic Acids Res 22(18):3748–3752. https://doi.org/10.1093/nar/22.18.3748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. C-D H, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9(4):789–798. https://doi.org/10.1016/S1097-2765(02)00496-3

    Article  Google Scholar 

  14. Gelderman G, Sivakumar A, Lipp S, Contreras LM (2015) Adaptation of tri-molecular fluorescence complementation allows assaying of regulatory Csr RNA-protein interactions in bacteria. Biotechnol Bioeng 112(2):365–375. https://doi.org/10.1002/bit.25351

    Article  CAS  PubMed  Google Scholar 

  15. Sowa SW, Gelderman G, Leistra AN, Buvanendiran A, Lipp S, Pitaktong A, Vakulskas CA, Romeo T, Baldea M, Contreras LM (2017) Integrative FourD omics approach profiles the target network of the carbon storage regulatory system. Nucleic Acids Res 45(4):1673–1686. https://doi.org/10.1093/nar/gkx048

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gripenland J, Netterling S, Loh E, Tiensuu T, Toledo-Arana A, Johansson J (2010) RNAs: regulators of bacterial virulence. Nat Rev Microbiol 8(12):857–866

    Article  CAS  PubMed  Google Scholar 

  17. Storz G, Vogel J, Wassarman Karen M (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43(6):880–891. https://doi.org/10.1016/j.molcel.2011.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  19. Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell 159(4):925–939. https://doi.org/10.1016/j.cell.2014.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bandyra KJ, Said N, Pfeiffer V, Górna MW, Vogel J, Luisi BF (2012) The seed region of a small RNA drives the controlled destruction of the target mRNA by the Endoribonuclease RNase E. Mol Cell 47(6):943–953. https://doi.org/10.1016/j.molcel.2012.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gorski SA, Vogel J, Doudna JA (2017) RNA-based recognition and targeting: sowing the seeds of specificity. Nat Rev Mol Cell Biol 18(4):215–228. https://doi.org/10.1038/nrm.2016.174

    Article  CAS  PubMed  Google Scholar 

  22. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  23. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM, Pierce NA (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32(1):170–173. https://doi.org/10.1002/jcc.21596

    Article  CAS  PubMed  Google Scholar 

  24. Engler C, Marillonnet S (2014) Golden gate cloning. In: Valla S, Lale R (eds) DNA cloning and assembly methods, vol 1116. Humana Press, New York, pp 119–131

    Chapter  Google Scholar 

  25. Gottesman S, McCullen C, Guillier M, Vanderpool C, Majdalani N, Benhammou J, Thompson K, FitzGerald P, Sowa N, FitzGerald D (2006) Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol 71:1–11. https://doi.org/10.1101/sqb.2006.71.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kostecki JS, Li H, Turner RJ, DeLisa MP (2010) Visualizing interactions along the Escherichia coli twin-arginine translocation pathway using protein fragment complementation. PLoS One 5(2):e9225. https://doi.org/10.1371/journal.pone.0009225

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu MY, Romeo T (1997) The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. J Bacteriol 179(14):4639–4642. https://doi.org/10.1128/jb.179.14.4639-4642.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edwards AN, Patterson-Fortin LM, Vakulskas CA, Mercante JW, Potrykus K, Vinella D, Camacho MI, Fields JA, Thompson SA, Georgellis D, Cashel M, Babitzke P, Romeo T (2011) Circuitry linking the Csr and stringent response global regulatory systems. Mol Microbiol 80(6):1561–1580. https://doi.org/10.1111/j.1365-2958.2011.07663.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klein JS, Jiang S, Galimidi RP, Keeffe JR, Bjorkman PJ (2014) Design and characterization of structured protein linkers with differing flexibilities. Protein Eng Des Sel 27(10):325–330. https://doi.org/10.1093/protein/gzu043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60(3):512–538

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu L, Chen H, Hu X, Zhang R, Zhang Z, Luo ZW (2006) Average gene length is highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms. Mol Biol Evol 23(6):1107–1108. https://doi.org/10.1093/molbev/msk019

    Article  CAS  PubMed  Google Scholar 

  32. Gama-Castro S, Salgado H, Santos-Zavaleta A, Ledezma-Tejeida D, Muñiz-Rascado L, García-Sotelo JS, Alquicira-Hernández K, Martínez-Flores I, Pannier L, Castro-Mondragón JA, Medina-Rivera A, Solano-Lira H, Bonavides-Martínez C, Pérez-Rueda E, Alquicira-Hernández S, Porrón-Sotelo L, López-Fuentes A, Hernández-Koutoucheva A, Moral-Chávez VD, Rinaldi F, Collado-Vides J (2016) RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond. Nucleic Acids Res 44(D1):D133–D143. https://doi.org/10.1093/nar/gkv1156

    Article  CAS  PubMed  Google Scholar 

  33. Liu MY, Gui G, Wei B, Preston JF 3rd, Oakford L, Yuksel U, Giedroc DP, Romeo T (1997) The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem 272(28):17502–17510. https://doi.org/10.1074/jbc.272.28.17502

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Welch Foundation (Grant F-1756 to L.M.C.), and the National Science Foundation (Grant MCB 1716777 to L.M.C., and DGE-1610403 to A.N.L. and M.K .M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia M. Contreras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Leistra, A.N., Mihailovic, M.K., Contreras, L.M. (2018). Fluorescence-Based Methods for Characterizing RNA Interactions In Vivo. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 1737. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7634-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7634-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7633-1

  • Online ISBN: 978-1-4939-7634-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics