Skip to main content

Bioinformatic Approach for Prediction of CsrA/RsmA-Regulating Small RNAs in Bacteria

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1737))

Abstract

CsrA/RsmA is a RNA-binding protein that functions as a global regulator controlling important processes such as virulence, secondary metabolism, motility, and biofilm formation in diverse bacterial species. The activity of CsrA/RsmA is regulated by small RNAs that contain multiple binding sites for the protein. The expression of these noncoding RNAs effectively sequesters the protein and reduces free cellular levels of CsrA/RsmA. While multiple bacterial small RNAs that bind to and regulate CsrA/RsmA levels have been discovered, it is anticipated that there are several such small RNAs that remain undiscovered. To assist in the discovery of these small RNAs, we have developed a bioinformatics approach that combines sequence- and structure-based features to predict small RNA regulators of CsrA/RsmA. This approach analyzes structural motifs in the ensemble of low energy secondary structures of known small RNA regulators of CsrA/RsmA and trains a binary classifier on these features. The proposed machine learning approach leads to several testable predictions for small RNA regulators of CsrA/RsmA, thereby complementing and accelerating experimental efforts aimed at discovery of noncoding RNAs in the CsrA/RsmA pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vakulskas CA, Potts AH, Babitzke P, Ahmer BM, Romeo T (2015) Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol Mol Biol Rev 79(2):193–224. https://doi.org/10.1128/mmbr.00052-14

    Article  PubMed  PubMed Central  Google Scholar 

  2. Timmermans J, Van Melderen L (2010) Post-transcriptional global regulation by CsrA in bacteria. Cell Mol Life Sci 67(17):2897–2908. https://doi.org/10.1007/s00018-010-0381-z

    Article  CAS  PubMed  Google Scholar 

  3. Burrowes E, Baysse C, Adams C, O'Gara F (2006) Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152(Pt 2):405–418. https://doi.org/10.1099/mic.0.28324-0

    Article  CAS  PubMed  Google Scholar 

  4. Lawhon SD, Frye JG, Suyemoto M, Porwollik S, McClelland M, Altier C (2003) Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol 48(6):1633–1645

    Article  CAS  PubMed  Google Scholar 

  5. Molofsky AB, Swanson MS (2003) Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol 50(2):445–461

    Article  CAS  PubMed  Google Scholar 

  6. Yakhnin H, Pandit P, Petty TJ, Baker CS, Romeo T, Babitzke P (2007) CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol Microbiol 64(6):1605–1620. https://doi.org/10.1111/j.1365-2958.2007.05765.x

    Article  CAS  PubMed  Google Scholar 

  7. Babitzke P, Romeo T (2007) CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 10(2):156–163. https://doi.org/10.1016/j.mib.2007.03.007

    Article  CAS  PubMed  Google Scholar 

  8. Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact 14(12):1351–1363. https://doi.org/10.1094/mpmi.2001.14.12.1351

    Article  CAS  PubMed  Google Scholar 

  9. Valverde C, Heeb S, Keel C, Haas D (2003) RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol Microbiol 50(4):1361–1379

    Article  CAS  PubMed  Google Scholar 

  10. Lapouge K, Schubert M, Allain FH, Haas D (2008) Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67(2):241–253. https://doi.org/10.1111/j.1365-2958.2007.06042.x

    Article  CAS  PubMed  Google Scholar 

  11. Brencic A, McFarland KA, McManus HR, Castang S, Mogno I, Dove SL, Lory S (2009) The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol 73(3):434–445. https://doi.org/10.1111/j.1365-2958.2009.06782.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kulkarni PR, Cui X, Williams JW, Stevens AM, Kulkarni RV (2006) Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri. Nucleic Acids Res 34(11):3361–3369. https://doi.org/10.1093/nar/gkl439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Edwards RL, Jules M, Sahr T, Buchrieser C, Swanson MS (2010) The Legionella pneumophila LetA/LetS two-component system exhibits rheostat-like behavior. Infect Immun 78(6):2571–2583. https://doi.org/10.1128/iai.01107-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hovel-Miner G, Pampou S, Faucher SP, Clarke M, Morozova I, Morozov P, Russo JJ, Shuman HA, Kalachikov S (2009) SigmaS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila. J Bacteriol 191(8):2461–2473. https://doi.org/10.1128/jb.01578-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sahr T, Bruggemann H, Jules M, Lomma M, Albert-Weissenberger C, Cazalet C, Buchrieser C (2009) Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol Microbiol 72(3):741–762. https://doi.org/10.1111/j.1365-2958.2009.06677.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Daub J, Eberhardt RY, Tate JG, Burge SW (2015) Rfam: annotating families of non-coding RNA sequences. Methods Mol Biol 1269:349–363. https://doi.org/10.1007/978-1-4939-2291-8_22

    Article  CAS  PubMed  Google Scholar 

  17. Fakhry CT, Kulkarni PR, Chen P, Kulkarni RV, Zarringhalam K (2017) Prediction of bacterial small RNAs in the RsmA (CsrA) and ToxT pathways: a machine learning approach. BMC Genomics 18:645

    Article  PubMed  PubMed Central  Google Scholar 

  18. Altschul SF, Erickson BW (1985) Significance of nucleotide sequence alignments: a method for random sequence permutation that preserves dinucleotide and codon usage. Mol Biol Evol 2(6):526–538

    CAS  PubMed  Google Scholar 

  19. Lesnik EA, Sampath R, Levene HB, Henderson TJ, McNeil JA, Ecker DJ (2001) Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Res 29(17):3583–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lorenz R, Bernhart SH, Honer Z, Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26. https://doi.org/10.1186/1748-7188-6-26

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, van Helden J (2011) RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res 39(Web Server issue):W86–W91. https://doi.org/10.1093/nar/gkr377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D (2011) ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol 8(1):11–13

    Article  CAS  PubMed  Google Scholar 

  23. Valverde C, Lindell M, Wagner EG, Haas D (2004) A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of Pseudomonas fluorescens. J Biol Chem 279(24):25066–25074. https://doi.org/10.1074/jbc.M401870200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NCI-funded U54 UMass Boston-Dana Farber/Harvard Cancer Center Partnership Grant [CA156734].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul V. Kulkarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fakhry, C.T., Zarringhalam, K., Kulkarni, R.V. (2018). Bioinformatic Approach for Prediction of CsrA/RsmA-Regulating Small RNAs in Bacteria. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 1737. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7634-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7634-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7633-1

  • Online ISBN: 978-1-4939-7634-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics