Skip to main content

Pulse-Chase Biosynthetic Radiolabeling of Pancreatic Islets to Measure Beta Cell Function

  • Protocol
  • First Online:
Investigations of Early Nutrition Effects on Long-Term Health

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1735))

  • 2069 Accesses

Abstract

Pulse-chase radiolabeling of cells with radioactive amino acids is a common method for studying the biosynthesis of proteins. The labeled proteins can then be immunoprecipitated and analyzed by electrophoresis and gel imaging techniques. This chapter presents a protocol for the biosynthetic labeling and immunoprecipitation of pancreatic islet proteins which are known to be affected in disorders such as diabetes, obesity, and metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.who.int/nmh/publications/ncd_report_chapter1.pdf

  2. http://www.who.int/mediacentre/factsheets/fs311/en/

  3. http://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/how-the-world-could-better-fight-obesity

  4. http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf

  5. Piot P, Caldwell A, Lamptey P, Nyrirenda M, Mehra S, Cahill K et al (2016) J Glob Health 6:010304. https://doi.org/10.7189/jogh.06.010304

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carolan-Olah M, Duarte-Gardea M, Lechuga J (2015) A critical review: early life nutrition and prenatal programming for adult disease. J Clin Nurs 24:3716–3729

    Article  PubMed  Google Scholar 

  7. Lopes GA, Ribeiro VL, Barbisan LF, Marchesan Rodrigues MA (2016) Fetal developmental programing: insights from human studies and experimental models. J Matern Fetal Neonatal Med 23:1–7

    Google Scholar 

  8. Lee HS (2015) Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Forum Nutr 7:9492–9507

    CAS  Google Scholar 

  9. Tarry-Adkins JL, Ozanne SE (2017) Nutrition in early life and age-associated diseases. Ageing Res Rev 39:96–105. pii: S1568-1637(16)30179-9. https://doi.org/10.1016/j.arr.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  10. Alfaradhi MZ, Ozanne SE (2011) Developmental programming in response to maternal overnutrition. Front Genet 2:27–39

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fernandez-Twinn DS, Alfaradhi MZ, Martin-Gronert MS, Duque-Guimaraes DE, Piekarz A, Ferland-McCollough D et al (2014) Downregulation of IRS-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms. Mol Metab 3:325–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Camm EJ, Martin-Gronert MS, Wright NL, Hansell JA, Ozanne SE, Giussani DA (2011) Prenatal hypoxia independent of undernutrition promotes molecular markers of insulin resistance in adult offspring. FASEB J 25:420–427

    Article  CAS  PubMed  Google Scholar 

  13. Martínez JA, Cordero P, Campión J, Milagro FI (2012) Interplay of early-life nutritional programming on obesity, inflammation and epigenetic outcomes. Proc Nutr Soc 71:276–283

    Article  PubMed  Google Scholar 

  14. Dixon JB (2009) Obesity and diabetes: the impact of bariatric surgery on type-2 diabetes. World J Surg 33:2014–2021

    Article  PubMed  Google Scholar 

  15. Khavandi K, Brownrigg J, Hankir M, Sood H, Younis N, Worth J et al (2014) Interrupting the natural history of diabetes mellitus: lifestyle, pharmacological and surgical strategies targeting disease progression. Curr Vasc Pharmacol 12:155–167

    Google Scholar 

  16. Porte D Jr, Kahn SE (1991) Mechanisms for hyperglycemia in type II diabetes mellitus: therapeutic implications for sulfonylurea treatment—an update. Am J Med 90(6A):8S–14S

    Article  PubMed  Google Scholar 

  17. Takahashi N (2015) Imaging analysis of insulin secretion with two-photon microscopy. Biol Pharm Bull 38:656–662

    Article  CAS  PubMed  Google Scholar 

  18. Davidson HW, Rhodes CJ, Hutton JC (1988) Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature (London) 333:93–96

    Article  CAS  Google Scholar 

  19. Bailyes E, Shennan KIJ, Seal AJ, Smeekens SP, Steiner DF, Hutton JC et al (1992) A member of the eukaryotic subtilisin family (PC3) has the enzymatic properties of the type 1 proinsulin-converting endopeptidase. Biochem J 285:391–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bennett DL, Bailyes EM, Nielsen E, Guest PC, Rutherford NG, Arden SD et al (1992) Identification of the type 2 proinsulin processing endopeptidase as PC2, a member of the eukaryote subtilisin family. J Biol Chem 267:15229–15236

    CAS  PubMed  Google Scholar 

  21. Davidson HW, Hutton JC (1987) The insulin-secretory-granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem J 245:575–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guest PC, Rhodes CJ, Hutton JC (1989) Regulation of the biosynthesis of insulin secretory granule proteins: co-ordinate translational control is exerted on some, but not all, granule matrix constituents. Biochem J 257:432–437

    Article  Google Scholar 

  23. Guest PC, Bailyes EM, Hutton JC (1997) Endoplasmic reticulum Ca2+ is important for the proteolytic processing and intracellular transport of proinsulin in the pancreatic beta-cell. Biochem J 323:445–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Guest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guest, P.C. (2018). Pulse-Chase Biosynthetic Radiolabeling of Pancreatic Islets to Measure Beta Cell Function. In: Guest, P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7614-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7614-0_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7613-3

  • Online ISBN: 978-1-4939-7614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics