Skip to main content

Nutritional Programming Effects on Development of Metabolic Disorders in Later Life

  • Protocol
  • First Online:
Investigations of Early Nutrition Effects on Long-Term Health

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1735))

Abstract

Developmental programming resulting from maternal malnutrition can lead to an increased risk of metabolic disorders such as obesity, insulin resistance, type 2 diabetes and cardiovascular disorders in the offspring in later life. Furthermore, many conditions linked with developmental programming are also known to be associated with the aging process. This review summarizes the available evidence about the molecular mechanisms underlying these effects, with the potential to identify novel areas of therapeutic intervention. This could also lead to the discovery of new treatment options for improved patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kral JG, Biron S, Simard S, Hould FS, Lebel S, Marceau S et al (2006) Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics 118:e1644–e1649

    Article  PubMed  Google Scholar 

  2. Waterland RA, Garza C (1999) Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr 69:179–197

    CAS  PubMed  Google Scholar 

  3. Waterland RA (2005) Does nutrition during infancy and early childhood contribute to later obesity via metabolic imprinting of epigenetic gene regulatory mechanisms? Nestle Nutrition workshop series. Paediatr Progr 56:157–171

    Google Scholar 

  4. Cao-Lei L, Massart R, Suderman MJ, Machnes Z, Elgbeili G, Laplante DP et al (2014) DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project Ice Storm. PLoS One 9:e107653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Milagro FI, Mansego ML, De Miguel C, Martinez JA (2013) Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med 34:782–812

    Article  CAS  PubMed  Google Scholar 

  8. Jacobsen SC, Gillberg L, Bork-Jensen J, Ribel-Madsen R, Lara E, Calvanese V et al (2014) Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding. Diabetologia 57:1154–1158

    Article  CAS  PubMed  Google Scholar 

  9. Waterland RA (2014) Epigenetic mechanisms affecting regulation of energy balance: many questions, few answers. Annu Rev Nutr 34:337–355

    Article  CAS  PubMed  Google Scholar 

  10. Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388

    Article  CAS  PubMed  Google Scholar 

  11. Duque-Guimarães D, Ozanne S (2017) Early nutrition and ageing: can we intervene? Biogerontology. https://doi.org/10.1007/s10522-017-9691-y

  12. Hales CN, Barker DJP, Clark PMS, Cox LJ, Fall C, Osmond C et al (1991) Fetal and infant growth and impaired glucose tolerance at aged 64. BMJ 303:1019–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hales CN, Barker DJ (1992) Type-2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601

    Article  CAS  PubMed  Google Scholar 

  14. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM (1993) Type 2(non-insulin-dependent) diabetes mellitus, hypertension, and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36:62–67

    Article  CAS  PubMed  Google Scholar 

  15. Sutton EF, Gilmore LA, Dunger DB, Heijmans BT, Hivert MF, Ling C et al (2016) Developmental programming: state-of-the-science and future directions-summary from a Pennington Biomedical symposium. Obesity (Silver Spring) 24:1018–1026

    Article  Google Scholar 

  16. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN et al (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177

    Article  CAS  PubMed  Google Scholar 

  17. Roseboom T, de Roijj S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82:485–491

    Google Scholar 

  18. Painter RC, Roseboom TJ, van Montfrans GA, Bossuyt PMM, Krediet RT, Osmond C et al (2005) Microalbuminuria in adults after prenatal exposure to the Dutch famine. J Am Soc Nephrol 1:189–194

    Google Scholar 

  19. Poulsen P, Vaag AA, Kyvik KO, Moller Jensen D, Beck-Nielsen H (1997) Low birth weight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs. Diabetologia 40:439–446

    Article  CAS  PubMed  Google Scholar 

  20. Grunnet L, Vielworth S, Vaag A, Poulsen P (2007) Birth weight is nongenetically associated with glucose intolerance in elderly twins, independent of adult obesity. J Intern Med 262:96–103

    Article  CAS  PubMed  Google Scholar 

  21. Poulsen P, Levin K, Beck-Nielsen H, Vaag A (2002) Age-dependent impact of zygosity and birth weight on insulin secretion and in twins. Diabetologia 45:1649–1657

    Article  CAS  PubMed  Google Scholar 

  22. Poulsen P, Vaag A (2006) The intrauterine environment as reflected by birth size and twin and zygosity status influences insulin action and intracellular glucose metabolism in an age- or time-dependent manner. Diabetes 55:1819–1825

    Article  CAS  PubMed  Google Scholar 

  23. Crowther NJ, Cameron N, Trusler J, Gray IP (1998) Association between poor glucose tolerance and rapid postnatal weight gain in seven-year-old children. Diabetologia 10:1163–1167

    Article  Google Scholar 

  24. Ong KK, Petry CJ, Emmett PM, Sandhu MS, Kiess W, Hales CN et al (2004) Insulin sensitivity and secretion in normal children related to size at birth, postnatal growth and plasma-like growth factor-1 levels. Diabetologia 6:1064–1070

    Google Scholar 

  25. Touwslager RN, Houben AJ, Tan FE, Gielen M, Zeegers MP, Stehouwer CD et al (2015) Growth and endothelial function in the first two years of life. J Pediatr 166:666–667s1

    Article  CAS  PubMed  Google Scholar 

  26. Law CM, Shiell AW, Newsome CA, Syddall HE, Shinebourne EA, Fayers PM et al (2002) Fetal, infant and childhood growth and adult blood pressure: a longitudinal study from birth to 22 years of age. Circulation 105:1088–1092

    Article  CAS  PubMed  Google Scholar 

  27. Erikkson JG, Forsen T, Tuomilehto J, Winter PD, Osmond C, Barker DJP (2001) Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 318:427–431

    Article  Google Scholar 

  28. Faienza MF, Brunetti G, Ventura A, D’Aniello M, Pepe T, Giordano P et al (2013) Nonalcoholic fatty liver disease in prepubertal children born small for gestational age: influence of rapid catch up growth. Horm Res Paediatr 79:103–109

    Article  CAS  PubMed  Google Scholar 

  29. Fewtrell MS, Morley R, Abbott RA, Singhal A, Stephenson T, MacFadyen UM et al (2001) Catch-up growth in small for gestational-age infants: a randomized trial. Am J Clin Nutr 74:516–523

    CAS  PubMed  Google Scholar 

  30. Martin RM, Gunnell D, Davey-Smith G (2005) Breast-feeding in infancy and blood-pressure in later life; systemic review and meta-analysis. Am J Epidemiol 161:15–26

    Article  PubMed  Google Scholar 

  31. Owen CG, Whincup PH, Odoki K, Gilg JA, Cook DG (2002) Infant feeding and blood cholesterol: a study in adolescents and a systematic review. Pediatrics 110:597–608

    Article  PubMed  Google Scholar 

  32. Ravelli ACJ, Van der Meulen JHP, Osmond C, Barker DJP, Bleker OP (2000) Infant feeding and adult glucose tolerance lipid profile, blood pressure and obesity. Arch Dis Child 82:248–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arenz S, Ruckerl R, Koletzko B, von Kries R (2004) Breastfeeding and childhood obesity: a systematic review. Int J Obes (Lond) 10:1247–1256

    Article  Google Scholar 

  34. Djelanik AAAMJ, Kunst AE, van der Waal MF, Smit HA, Vrijkotte TGM (2011) Contribution of overweight and obesity to the occurrence of adverse pregnancy outcomes in a multi-ethic cohort: population attributive fractions for Amsterdam. Epidemiology 119:283–290

    Google Scholar 

  35. McCance DR, Pettitt DJ, Hanson RL, Jacobsson LT, Knowler WC, Bennett PH (1994) Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving baby phenotype? BMJ 308:942–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Daraki V, Georgiou V, Papavasiliou S, Chalkiadaki G, Karahaliou M, Koinaki S et al (2015) Metabolic profile in early pregnancy is associated with offspring adiposity at 4 years of age: the Rhea pregnancy cohort Crete, Greece. PLoS One 10:e0126327. https://doi.org/10.1371/journal.pone.0126327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Whitaker RC (2004) Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy. Pediatrics 114:e29–e36

    Article  PubMed  Google Scholar 

  38. Reynolds RM, Allan KM, Raja EA, Bhattacharya S, McNeill G, Hannaford PC et al (2013) Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow-up of 1 323 275 person years. BMJ 347:f4539. https://doi.org/10.1136/bmj.f4539

  39. Gaillard R (2015) Maternal obesity during pregnancy and cardiovascular disease and development in later life. Eur J Epidemiol 30:1141–1152

    Article  PubMed  PubMed Central  Google Scholar 

  40. Petry CJ, Dorling MW, Pawlak DB, Ozanne SE, Hales CN (2001) Diabetes in old male offspring of rat dams fed a reduced protein diet. Int J Exp Diabetes Res 2:139–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ozanne SE, Jensen CB, Tingey KJ, Storgaard H, Madsbad S, Vaag A (2005) Low birth weight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia 48:547–552

    Article  CAS  PubMed  Google Scholar 

  42. Ozanne SE, Jensen CB, Tingey KJ, Martin-Gronert MS, Grunnet L, Brons C et al (2006) Decreased protein levels of key insulin signalling molecules in adipose tissue from young men with a low birthweight: potential link to increased diabetes? Diabetologia 49:2993–2999

    Article  CAS  PubMed  Google Scholar 

  43. Langley-Evans SC, Welham SJM, Jackson AA (1999) Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 64:965–974

    Article  CAS  PubMed  Google Scholar 

  44. Black MJ, Lim K, Zimanyi MA, Sampson AK, Bubb KJ, Flower RL et al (2015) Accelerated age-related decline in renal and vascular function in female rats following early-life growth restriction. Am J Physiol Regul Intergr Comp Physiol 309:R1153–R1161

    Article  CAS  Google Scholar 

  45. Kwon DH, Kang W, Nam YS, Lee MS, Lee IY, Kim HJ et al (2012) Dietary protein restriction leads to steatohepatitis and alters leptin/signal transducers and activators of transcription 3 signaling in lactating rats. J Nutr Biochem 23:791–799

    Article  CAS  PubMed  Google Scholar 

  46. Jennings BJ, Ozanne SE, Dorling MW, Hales CN (1999) Early growth determines longevity in male rats and may be related to telomere shortening in the kidney. FEBS Lett 448:4–8

    Article  CAS  PubMed  Google Scholar 

  47. Ozanne SE, Hales CN (2004) Lifespan: catch-up growth and obesity in male mice. Nature 427:411–412

    Article  CAS  PubMed  Google Scholar 

  48. Carr SK, Chen JH, Cooper WN, Constancia M, Yeo G, Ozanne SE (2014) Maternal diet amplifies the aging trajectory of Cidea in male mice and leads to the development of fatty liver. FASEB J 28:2191–2201

    Article  CAS  PubMed  Google Scholar 

  49. Tarry-Adkins JL, Fernandez-Twinn DS, Madsen R, Chen JH, Carpenter AMM, Hargreaves IPP et al (2015) Coenzyme Q10 prevents insulin signalling dysregulation and inflammation prior to development of insulin resistance in male offspring of a rat model of poor maternal nutrition and accelerated postnatal growth. Endocrinology 156:3528–3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tarry-Adkins JL, Fernandez-Twinn DS, Hargreaves IP, Neergheen V, Aiken CE, Martin-Gronert MS et al (2016) Coenzyme Q10 (CoQ) prevents hepatic fibrosis, inflammation and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth. Am J Clin Nutr 103:579–588

    Article  CAS  PubMed  Google Scholar 

  51. Chen JH, Tarry-Adkins JL, Heppolette CAA, Palmer DB, Ozanne SE (2010) Early-life nutrition influences thymic growth in male mice that may be related to the regulation of longevity. Clin Sci 118:429–438

    Article  Google Scholar 

  52. Heppolette CA, Chen JH, Carr SK, Palmer DB, Ozanne SE (2016) The effects of aging and maternal protein restriction during lactation on thymic involution and peripheral immunosenescence in adult mice. Oncotarget 7:6398–6409

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen JH, Martin-Gronert MS, Tarry-Adkins JL, Ozanne SE (2009) Maternal protein restriction affects postnatal growth and the expression of key proteins involved in lifespan regulation in mice. PLoS One 4:e4950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tarry-Adkins JL, Joles JA, Chen JH, Martin-Gronert MS, van der Giezen DM, Goldschmeding R (2007) Protein restriction in lactation confers nephroprotective effects in the male rat and is associated with increased antioxidant expression. Am J Physiol Regul Integr Comp Physiol 293:R1259–R1266

    Article  CAS  PubMed  Google Scholar 

  55. LeBourg E (2009) Hormesis, aging and longevity. Biochim Biophys Acta 1790:1030–1039

    Article  CAS  Google Scholar 

  56. Fontana L, Partridge L, Longo VD (2010) Extending healthy life-span – from yeast to humans. Science 328:321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vuguin P, Raab E, Liu B, Barzilai N, Simmons R (2004) Hepatic insulin resistance precedes the development of diabetes in a model of intrauterine growth restriction. Diabetes 53:2617–2622

    Article  CAS  PubMed  Google Scholar 

  58. Simmons RA, Templeton LJ, Gertz SJ (2001) Intrauterine growth retardation leads to development of type 2 diabetes in rats. Diabetes 50:2279–2286

    Article  CAS  PubMed  Google Scholar 

  59. Mazzuca MQ, Wlodek ME, Dragomir NM, Parkington HC, Tare M (2010) Uteroplacental insufficiency programs regional vascular dysfunction and alters arterial stiffness in female offspring. J Physiol 588:1997–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moritz KM, Mazzuca MQ, Siebel AL, Milbus A, Arena D, Tare M et al (2009) Uteroplacental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female rats. J Physiol 587:2635–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tran M, Young ME, Jefferies AJ, Hryciw DH, Ward MM, Fletcher EL et al (2015) Uteroplacental insufficiency leads to hypertension, but not glucose intolerance or impaired skeletal muscle mitochondrial biogenesis, in 12-month-old rats. Physiol Rep 3(9):pii: e12556. 10.14814/phy2.12556

    Article  PubMed Central  CAS  Google Scholar 

  62. Franco Mdo C, Arruda RM, Fortes ZB, de Olivera SF, Carvalho MH, Tostes RC et al (2002) Severe nutrient restriction in pregnant rats aggravates hypertension, altered vascular reactivity, and renal development in spontaneously hypertensive rat offspring. J Cardiovasc Pharmocol 39:369–377

    Article  Google Scholar 

  63. Franco Mdo C, Dantas AP, Akamine EH, Kawamoto EM, Fortes ZB, Scavone C et al (2002) Enhanced oxidative stress as a potential mechanism underlying the programming of hypertension in utero. J Cardiovasc Pharmacol 40:501–509

    Article  PubMed  Google Scholar 

  64. Cox LA, Nijland MJ, Gilbert JS, Schlabritz-Loutsevitch NE, Hubbard GB, McDonald TJ et al (2006) Effect of 30 per cent maternal nutrient restriction from 0.16–0.5 gestation on fetal baboon kidney gene expression. J Physiol 572:67–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dallschaft NS, Alexandre-Gouabau MC, Gardner DS, Antignac JP, Keisler DH,  Budge H et al (2015) Effect of pre-and postnatal growth and post-weaning activity on glucose metabolism in the offspring. J Endocrinol 224:171–182

    Google Scholar 

  66. Vickers MH, Reddy S, Ikenasio BA, Breier BH (2001) Dysregulation of the adipoinsular axis – a mechanism for the pathogenesis of hyperleptinemia and adipogenic diabetes induced by fetal programming. J Endocrinol 170:323–332

    Article  CAS  PubMed  Google Scholar 

  67. Fernandez-Twinn DS, Blackmore HL, Siggens L, Giussani DA, Cross CM, Foo R et al (2012) The programming of cardiac hypertrophy in the offspring by maternal obesity is associated with hyperinsulinemia, AKT, ERK, and mTOR activation. Endocrinology 153:5961–5971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Blackmore HL, Neo Y, Fernandez-Twinn DS, Tarry-Adkins JL, Giussani DA, Ozanne SE (2014) Maternal diet-induced obesity programmes cardiovascular dysfunction in adult male mouse offspring independent of current body weight. Endocrinology 155:3970–3980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EHJM et al (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51:383–392

    Article  CAS  PubMed  Google Scholar 

  70. Alfaradhi MZ, Fernandez-Twinn DS, Martin-Gronert MS, Musial B, Fowden A, Ozanne SE (2014) Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity. Am J Physiol Regul Integr Comp Physiol 307:R26–R34

    Google Scholar 

  71. Oben JA, Mouralidarane A, Samuelsson AM, Matthews PJ, Morgan ML, McKee C et al (2010) Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice. J Hepatol 52:913–920

    Article  CAS  PubMed  Google Scholar 

  72. McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE et al (2009) Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest 119:323–335

    Google Scholar 

  73. White CL, Purpera MN, Morrison CD (2009) Maternal obesity is necessary for programming effect of high-fat diet on offspring. Am J Physiol Regul Integr Comp Physiol 296:R1464–R1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shankar K, Harrell A, Liu X, Gilchrist JM, Ronis MJJ, Badger TM (2008) Maternal obesity at conception programs obesity in the offspring. Am J Physiol Regul Integr Comp Physiol 294:R528–R538

    Article  CAS  PubMed  Google Scholar 

  75. Shankar K, Kang P, Harrell A, Zhong Y, Marecki JC, Ronis MJJ et al (2010) Maternal overweight programs insulin and adiponectin signaling in the offspring. Endocrinology 151:2577–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Akyol A, Langley-Evans SC, McMullen S (2009) Obesity induced by cafeteria feeding and pregnancy outcome in the rat. Br J Nutr 102:1601–1610

    Article  CAS  PubMed  Google Scholar 

  77. Snoeck A, Remacle C, Reusens B, Hoet JJ (1990) Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate 57:107–118

    Article  CAS  PubMed  Google Scholar 

  78. Styrud J, Eriksson UJ, Grill V, Swenne I (2005) Experimental intrauterine growth retardation in the rat causes a reduction of pancreatic B-cell mass, which persists into adulthood. Biol Neonate 88:122–128

    Article  CAS  PubMed  Google Scholar 

  79. Berney DM, Desai M, Palmer DJ, Greenwald S, Brown A, Hales CN et al (1997) The effects of maternal protein deprivation on the fetal rat pancreas: major structural changes and their recuperation. J Pathol 183:109–115

    Article  CAS  PubMed  Google Scholar 

  80. Desai M, Crowther NJ, Ozanne SE, Lucas A, Hales CN (1995) Adult glucose and lipid metabolism may be programmed during fetal life. Biochem Soc Trans 23:331–335

    Article  CAS  PubMed  Google Scholar 

  81. Burns SP, Desai M, Cohen RD, Hales CN, Iles RA, Germain JP et al (1997) Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J Clin Invest 100:1768–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hales CN, Desai M, Ozanne SE, Crowther NJ (1996) Fishing in the stream of diabetes: from measuring insulin to the control of fetal organogenesis. Biochem Soc Trans 24:341–350

    Article  CAS  PubMed  Google Scholar 

  83. Desai M, Byrne CD, Zhang J, Petry CJ, Lucas A, Hales CN (1997) Programming of hepatic insulin-sensitive enzymes in offspring of rat dams fed a protein-restricted diet. Am J Physiol 272:G1083–G1090

    CAS  PubMed  Google Scholar 

  84. Sayer AA, Syddall HE, Dennison EM, Gilbody HJ, Duggleby SL, Cooper C et al (2004) Birth weight, weight at 1 y of age, and body composition in older men: findings from the Hertfordshire Cohort Study. Am J Clin Nutr 80:199–203

    CAS  PubMed  Google Scholar 

  85. Gale CR, Martyn CN, Kellingray S, Eastell R, Cooper C (2001) Intrauterine programming of adult body composition. J Clin Endocrinol Metab 86:267–272

    CAS  PubMed  Google Scholar 

  86. Cettour-Rose P, Samec S, Russell AP, Summermatter S, Mainieri D, Carrillo-Theander C et al (2005) Redistribution of glucose from skeletal muscle to adipose tissue during catch-up fat: a link between catch-up growth and later metabolic syndrome. Diabetes 54:751–756

    Article  CAS  PubMed  Google Scholar 

  87. Thompson LP, Al-Hasan Y (2012) Impact of oxidative stress in fetal programming. J Pregnancy 2012:582748. https://doi.org/10.1155/2012/582748

    Article  PubMed  PubMed Central  Google Scholar 

  88. Richter T, von Zglinicki T (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42:1039–1042

    Article  CAS  PubMed  Google Scholar 

  89. Kawanishi S, Oikawa S (2004) Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci 1019:278–284

    Article  CAS  PubMed  Google Scholar 

  90. Tarry-Adkins JL, Chen JH, Jones RH, Smith NH, Ozanne SE (2010) Poor maternal nutrition leads to alterations in oxidative stress, antioxidant defense capacity, and markers of fibrosis in rat islets: potential underlying mechanisms for development of the diabetic phenotype in later life. FASEB J 24:2762–2771

    Article  CAS  PubMed  Google Scholar 

  91. Bayol SA, Simbi BH, Stickland NC (2005) A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. J Physiol 567:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Beck B, Burlet A, Nicolas JP, Burlet C (1990) Hyperphagia in obesity is associated with a central peptidergic dysregulation in rats. J Nutr 120:806–811

    Article  CAS  PubMed  Google Scholar 

  93. Boney CM, Verma A, Tucker R, Vohr BR (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115:e290–e296

    Article  PubMed  Google Scholar 

  94. Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC et al (2009) Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 50:1796–1808

    Article  CAS  PubMed  Google Scholar 

  95. Buckley AJ, Keserü B, Briody J, Thompson M, Ozanne SE, Thompson CH (2005) Altered body composition and metabolism in the male offspring of high fat-fed rats. Metab Clin Exp 54:500–507

    Article  CAS  PubMed  Google Scholar 

  96. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269:546–549

    Article  CAS  PubMed  Google Scholar 

  97. Chen JH, Cottrell EC, Ozanne SE (2010) Early growth and ageing. Nestlé Nutr Workshop Ser Paediatr Program 65:41–50

    Article  Google Scholar 

  98. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y et al (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5:5592. https://doi.org/10.1038/ncomms6592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cooper WN, Khulan B, Owens S, Elks CE, Seidel V, Prentice AM et al (2012) DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. FASEB J 26:1782–1790

    Article  CAS  PubMed  Google Scholar 

  101. Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC (2007) Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 97:1064–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386

    Article  CAS  PubMed  Google Scholar 

  103. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA et al (2014) Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 5:3746. https://doi.org/10.1038/ncomms4746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Thompson RF, Fazzari MJ, Niu H, Barzilai N, Simmons RA, Greally JM (2010) Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. J Biol Chem 285:15111–15118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Quilter CR, Cooper WN, Cliffe KM, Skinner BM, Prentice PM, Nelson L et al (2014) Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk. FASEB J 28:4868–4879

    Article  CAS  PubMed  Google Scholar 

  106. Zhang J, Zhang F, Didelot X, Bruce KD, Cagampang FR, Vatish M et al (2009) Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics 10:478. https://doi.org/10.1186/1471-2164-10-478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Dunn GA, Bale TL (2009) Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150:4999–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dunn GA, Bale TL (2011) Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 152:2228–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sen S, Simmons RA (2010) Maternal antioxidant supplementation prevents adiposity in Western diet fed rats. Diabetes 59:3058–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cambonie G, Comte B, Yzydorczyk C, Ntimbane T, Germaine N, Le NL et al (2007) Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet. Am J Physiol Regul Integr Comp Physiol 292:R1236–R1245

    Article  CAS  PubMed  Google Scholar 

  111. Shukla P, Lemley CO, Dubey N, Meyer AM, O’Rourke ST, Vonnahme KA (2014) Effect of maternal nutrient restriction and melatonin supplementation from mid to late gestation on vascular reactivity of maternal and fetal placental arteries. Placenta 35:461–466

    Article  CAS  PubMed  Google Scholar 

  112. Tarry-Adkins JL, Blackmore HL, Martin-Gronert MS, Fernandez-Twinn DS, McConnell JM, Hargreaves IP et al (2013) Coenzyme Q10 prevents accelerated cardiac aging in a rat model of poor maternal nutrition and accelerated postnatal growth. Mol Metab 2:480–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH, Hargreaves IP, Martin-Gronert MS, McConnell JM et al (2014) Nutritional programming of coenzyme Q: potential for prevention and intervention? FASEB J 28:5398–5405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Duncan GE, Perri MG, Theriaque DW, Hutson AD, Eckel RH, Stacpoole PW (2003) Exercise training, without weight loss, increases insulin sensitivity and postheparin plasma lipase activity in previously sedentary adults. Diabetes Care 26:557–562

    Google Scholar 

  115. Poston L, Bell R, Croker H, Flynn AC, Godfrey KM, Goff L et al (2015) Effect of a behavioural intervention in obese pregnant women (the UPBEAT study): a multicentre, randomised controlled trial. Lancet Diabetes Endocrinol 3:767–777

    Article  PubMed  Google Scholar 

  116. Raipuria M, Bahari H, Morris MJ (2015) Effects of maternal diet and exercise during pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats. PLoS One 10:e0120980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Vega CC, Reyes-Castro LA, Bautista CJ, Larrea F, Nathanielsz PW, Zambrano E (2015) Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int J Obes (Lond) 39:712–729

    Article  CAS  Google Scholar 

  118. Chiswick CA, Reynolds RM, Denison FC, Drake AJ, Forbes S, Newby DE et al (2016) Does metformin reduce excess birthweight in offspring of obese pregnant women? A randomised controlled trial of efficacy, exploration of mechanisms and evaluation of other pregnancy complications. NIHR Journals Library, Southampton (UK). https://www.ncbi.nlm.nih.gov/pubmed/27606384

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Guest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ong, T.P., Guest, P.C. (2018). Nutritional Programming Effects on Development of Metabolic Disorders in Later Life. In: Guest, P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7614-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7614-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7613-3

  • Online ISBN: 978-1-4939-7614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics