Skip to main content

Culture of Human Primary Bone Cells and Phenotype Assessment

  • Protocol
  • First Online:
Neurotrophic Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1727))

Abstract

Bone engineering scaffolds and biomimetic substitutes are currently the leading techniques to repair and regenerate bone defects. Ideally, bone grafts should imitate the structure and properties of bone extracellular matrix, house osteoprogenitor cells, and provide all the necessary environmental cues to orchestrate the functions of osteoblast and osteoclast cells. Consequently, there is an increasing demand for preclinical models based on in vitro bone-derived cell cultures for screening of novel biomaterials. In this chapter, we provide the protocols for culture of primary human bone cells from explants of cortical mandible bone and for characterization of cell behavior on biomimetic surfaces in terms of strength of adhesion, proliferation, differentiation, and matrix mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656

    PubMed  PubMed Central  Google Scholar 

  2. Kanis JA, Cooper C, Rizzoli R et al (2017) Identification and management of patients at increased risk of osteoporotic fracture: outcomes of an ESCEO expert consensus meeting. Osteoporos Int 28(7):2023–2034. https://doi.org/10.1007/s00198-017-4009-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE et al (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14:15–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Czekanska EM, Stoddart MJ, Ralphs JR et al (2014) A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. J Biomed Mater Res 102A:2636–2643

    Article  CAS  Google Scholar 

  5. Pereira RC, Delany AM, Khouzam N et al (2015) Primary osteoblast-like cells from patients with end stage kidney disease reflect gene expression, proliferation and mineralization characteristics ex vivo. Kidney Int 87:593–601

    Article  CAS  PubMed  Google Scholar 

  6. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  7. Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504

    Article  CAS  PubMed  Google Scholar 

  8. Anselme K, Bigerelle M, Noel B et al (2000) Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughness. J Biomed Mater Res 49:155–166

    Article  CAS  PubMed  Google Scholar 

  9. Bagno A, Piovan A, Dettin M et al (2007) Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides. Bone 40:693–699

    Article  CAS  PubMed  Google Scholar 

  10. Brun P, Scorzeto M, Vassanelli S et al (2013) Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces. Acta Biomater 9:6105–6115

    Article  CAS  PubMed  Google Scholar 

  11. Owen TA, Aronow M, Shalhoub V et al (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420–430

    Article  CAS  PubMed  Google Scholar 

  12. Langenbach F, Handschel J (2013) Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 4:117

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bigerelle M, Anselme K (2005) Statistical correlation between cell adhesion and proliferation on biocompatible metallic materials. J Biomed Mater Res 72A:36–46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Brun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brun, P. (2018). Culture of Human Primary Bone Cells and Phenotype Assessment. In: Skaper, S. (eds) Neurotrophic Factors. Methods in Molecular Biology, vol 1727. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7571-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7571-6_33

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7570-9

  • Online ISBN: 978-1-4939-7571-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics