Skip to main content

Primary Motor Neuron Culture to Promote Cellular Viability and Myelination

  • Protocol
  • First Online:
Neurotrophic Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1727))

Abstract

A culture system that can recapitulate myelination in vitro will not only help us to better understand the mechanism of myelination and demyelination but also identify possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC co-culture system, MNs survive over 3 weeks and extend long axons. Both viability and axon growth of MNs in the co-culture are markedly enhanced as compared to those of MN monocultures. Co-labeling of myelin basic proteins and neuronal cell microtubules reveals that SCs form myelin sheaths by wrapping around the axons of MNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Clement AM, Nguyen MD, Roberts EA et al (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117

    Article  CAS  PubMed  Google Scholar 

  2. Lobsiger CS, Boillee S, McAlonis-Downes M et al (2009) Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice. Proc Natl Acad Sci U S A 106:4465–4470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sereda MW, Meyer zu Horste G, Suter U et al (2003) Therapeutic administration of progesterone antagonist in a model of Charcot-Marie-Tooth disease (CMT-1A). Nat Med 9:1533–1537

    Article  CAS  PubMed  Google Scholar 

  4. Berger P, Niemann A, Suter U (2006) Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). Glia 54:243–257

    Article  PubMed  Google Scholar 

  5. Sherman DL, Fabrizi C, Gillespie CS et al (2001) Specific disruption of a schwann cell dystrophin-related protein complex in a demyelinating neuropathy. Neuron 30:677–687

    Article  CAS  PubMed  Google Scholar 

  6. Woodhoo A, Alonso MB, Droggiti A et al (2009) Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci 12:839–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Campbell WW (2008) Evaluation and management of peripheral nerve injury. Clin Neurophysiol 119:1951–1965

    Article  PubMed  Google Scholar 

  8. SY F, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14:67–116

    Article  Google Scholar 

  9. Funakoshi H, Frisen J, Barbany G et al (1993) Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol 123:455–465

    Article  CAS  PubMed  Google Scholar 

  10. Hall SM (2005) Mechanisms of repair after traumatic injury. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy. Elsevier, Philadelphia, pp 1403–1433

    Chapter  Google Scholar 

  11. Honkanen H, Lahti O, Nissinen M et al (2007) Isolation, purification and expansion of myelination-competent, neonatal mouse Schwann cells. Eur J Neurosci 26:953–964

    Article  PubMed  Google Scholar 

  12. Paivalainen S, Nissinen M, Honkanen H et al (2008) Myelination in mouse dorsal root ganglion/Schwann cell cocultures. Mol Cell Neurosci 37:568–578

    Article  CAS  PubMed  Google Scholar 

  13. Taylor AM, Blurton-Jones M, Rhee SW et al (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Watkins TA, Emery B, Mulinyawe S et al (2008) Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60:555–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shaw PJ, Eggett CJ (2000) Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. J Neurol 247(Suppl 1):I17–127

    Article  PubMed  Google Scholar 

  16. Haastert K, Grosskreutz J, Jaeckel M et al (2005) Rat embryonic motoneurons in long-term co-culture with Schwann cells—a system to investigate motoneuron diseases on a cellular level in vitro. J Neurosci Methods 142:275–284

    Article  PubMed  Google Scholar 

  17. Gingras M, Beaulieu MM, Gagnon V et al (2008) In vitro study of axonal migration and myelination of motor neurons in a three-dimensional tissue-engineered model. Glia 56:354–364

    Article  PubMed  Google Scholar 

  18. Hyung S, Lee YB, Park JC et al (2015) Coculture of primary motor neurons and Schwann cells as a model for in vitro myelination. Sci Rep 5:15122. https://doi.org/10.1038/srep15122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Enes J, Langwieser N, Ruschel J et al (2010) Electrical activity suppresses axon growth through Ca(v)1.2 channels in adult primary sensory neurons. Curr Biol 20:1154–1164

    Article  CAS  PubMed  Google Scholar 

  20. Wiese S, Herrmann T, Drepper C et al (2009) Isolation and enrichment of embryonic mouse motoneurons from the lumbar spinal cord of individual mouse embryos. Nature Protocols 5 (1):31–38

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Agenda Project of Korea National Research Council of Science and Technology (NAP-09-04) and institutional grants from the Korea Institute of Science and Technology (2N38341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Kyo Francis Suh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Suh, JK.F., Hyung, S. (2018). Primary Motor Neuron Culture to Promote Cellular Viability and Myelination. In: Skaper, S. (eds) Neurotrophic Factors. Methods in Molecular Biology, vol 1727. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7571-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7571-6_32

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7570-9

  • Online ISBN: 978-1-4939-7571-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics