Skip to main content

Examining Myddosome Formation by Luminescence-Based Mammalian Interactome Mapping (LUMIER)

  • Protocol
  • First Online:
Innate Immune Activation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1714))

Abstract

Recent structural, biochemical, and functional studies have led to the notion that many of the post-receptor signaling complexes in innate immunity have a multimeric, multi-protein architecture whose hierarchical assembly is vital for function. The Myddosome is a post-receptor complex in the cytoplasmic signaling of Toll-like receptors (TLR) and the Interleukin-1 receptor (IL-1R), involving the proteins MyD88, IL-1R-associated kinase 4 (IRAK4), and IRAK2. Its importance is strikingly illustrated by the fact that rare germline mutations in MYD88 causing high susceptibility to infections are characterized by failure to assemble Myddosomes; conversely, gain-of-function MYD88 mutations leading to oncogenic hyperactivation of NF-κB show increased Myddosome formation. Reliable methods to probe Myddosome formation experimentally are therefore vital to further study the properties of this important post-receptor complex and its role in innate immunity, such as its regulation by posttranslational modification. Compared to structural and biochemical analyses, luminescence-based mammalian interactome mapping (LUMIER) is a straightforward, automatable, quantifiable, and versatile technique to study protein-protein interactions in a physiologically relevant context. We adapted LUMIER for Myddosome analysis and provide here a basic background of this technique, suitable experimental protocols, and its potential for medium-throughput screening. The principles presented herein can be adapted to other signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gay NJ, Gangloff M, O’Neill LA (2011) What the Myddosome structure tells us about the initiation of innate immunity. Trends Immunol 32(3):104–109. https://doi.org/10.1016/j.it.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  2. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, Schroder GF, Fitzgerald KA, Wu H, Egelman EH (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156(6):1193–1206. https://doi.org/10.1016/j.cell.2014.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Motshwene PG, Moncrieffe MC, Grossmann JG, Kao CC, Ayaluru M, Sandercock AM, Robinson CV, Latz E, Gay NJ (2009) An oligomeric signalling platform formed by the toll-like receptor signal transducers MyD88 and IRAK4. J Biol Chem 284:25404. https://doi.org/10.1074/jbc.M109.022392. M109.022392 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465(7300):885–890. https://doi.org/10.1038/nature09121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. George J, Motshwene PG, Wang H, Kubarenko AV, Rautanen A, Mills TC, Hill AV, Gay NJ, Weber AN (2011) Two human MYD88 variants, S34Y and R98C, interfere with MyD88-IRAK4-myddosome assembly. J Biol Chem 286(2):1341–1353. https://doi.org/10.1074/jbc.M110.159996. M110.159996 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307(5715):1621–1625. https://doi.org/10.1126/science.1105776. 307/5715/1621 [pii]

    Article  CAS  PubMed  Google Scholar 

  7. Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M (1988) The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54(4):541–552. 0092-8674(88)90076-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Avbelj M, Wolz OO, Fekonja O, Bencina M, Repic M, Mavri J, Kruger J, Scharfe C, Delmiro Garcia M, Panter G, Kohlbacher O, Weber AN, Jerala R (2014) Activation of lymphoma-associated MyD88 mutations via allostery-induced TIR-domain oligomerization. Blood 124(26):3896–3904. https://doi.org/10.1182/blood-2014-05-573188. blood-2014-05-573188 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blasche S, Koegl M (2013) Analysis of protein-protein interactions using LUMIER assays. Methods Mol Biol 1064:17–27. https://doi.org/10.1007/978-1-62703-601-6_2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. Julie George and Dr. Hui Wang for contributing to the setup of LUMIER in our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander N. R. Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wolz, OO., Koegl, M., Weber, A.N.R. (2018). Examining Myddosome Formation by Luminescence-Based Mammalian Interactome Mapping (LUMIER). In: De Nardo, D., De Nardo, C. (eds) Innate Immune Activation. Methods in Molecular Biology, vol 1714. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7519-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7519-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7518-1

  • Online ISBN: 978-1-4939-7519-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics