Skip to main content

Biochemical Isolation of the Myddosome from Murine Macrophages

  • Protocol
  • First Online:
Innate Immune Activation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1714))

Abstract

Ligand-induced macromolecular protein complex formation has emerged as a common means by which the innate immune system activates signal transduction pathways essential for host defense. Despite their structural divergence, key signaling molecules in diverse innate immune pathways mediate signal transduction by assembling higher-order protein complexes at specific subcellular locations in a stimulus-dependent manner. These protein complexes are collectively known as the supramolecular organizing centers (SMOCs), which link active receptors to a variety of downstream cellular responses. In the Toll-like receptor (TLR) pathway, the signaling adaptor MyD88 is the core of a SMOC called the myddosome, which is composed of the sorting adaptor TIRAP and the IRAK family kinases. Depending on the microbial ligands encountered, the myddosome can be assembled at the plasma membrane or endosomes, thereby leading to NF-ĸB and AP-1 activation, and the subsequent expression of pro-inflammatory cytokines. Herein, we provide a detailed protocol for studying myddosome assembly in murine bone marrow-derived macrophages (BMDMs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Brubaker SW et al (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chu H, Mazmanian SK (2013) Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol 14(7):668–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820

    Article  CAS  PubMed  Google Scholar 

  4. Vance RE, Isberg RR, Portnoy DA (2009) Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6(1):10–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    Article  CAS  PubMed  Google Scholar 

  6. Horng T et al (2002) The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420(6913):329–333

    Article  CAS  PubMed  Google Scholar 

  7. Yamamoto M et al (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301(5633):640–643

    Article  CAS  PubMed  Google Scholar 

  8. Yamamoto M et al (2002) Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420(6913):324–329

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto M et al (2003) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4(11):1144–1150

    Article  CAS  PubMed  Google Scholar 

  10. Medzhitov R et al (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2(2):253–258

    Article  CAS  PubMed  Google Scholar 

  11. Kagan JC, Medzhitov R (2006) Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125(5):943–955

    Article  CAS  PubMed  Google Scholar 

  12. Fitzgerald KA et al (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4(5):491–496

    Article  CAS  PubMed  Google Scholar 

  13. Lord KA, Hoffman-Liebermann B, Liebermann DA (1990) Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5(7):1095–1097

    CAS  PubMed  Google Scholar 

  14. Bonnert TP et al (1997) The cloning and characterization of human MyD88: a member of an IL-1 receptor related family. FEBS Lett 402(1):81–84

    Article  CAS  PubMed  Google Scholar 

  15. Wesche H et al (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7(6):837–847

    Article  CAS  PubMed  Google Scholar 

  16. Muzio M et al (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278(5343):1612–1615

    Article  CAS  PubMed  Google Scholar 

  17. Ngo VN et al (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 470(7332):115–119

    Article  CAS  PubMed  Google Scholar 

  18. von Bernuth H et al (2008) Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321(5889):691–696

    Article  Google Scholar 

  19. Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465(7300):885–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. George J et al (2011) Two human MYD88 variants, S34Y and R98C, interfere with MyD88-IRAK4-myddosome assembly. J Biol Chem 286(2):1341–1353

    Article  CAS  PubMed  Google Scholar 

  21. Ferrao R et al (2014) IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly. Mol Cell 55(6):891–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kagan JC, Magupalli VG, Wu H (2014) SMOCs: supramolecular organizing centres that control innate immunity. Nat Rev Immunol 14(12):821–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gay NJ, Gangloff M, O’Neill LA (2011) What the Myddosome structure tells us about the initiation of innate immunity. Trends Immunol 32(3):104–109

    Article  CAS  PubMed  Google Scholar 

  24. Bonham KS et al (2014) A promiscuous lipid-binding protein diversifies the subcellular sites of toll-like receptor signal transduction. Cell 156(4):705–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holler N et al (2003) Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol 23(4):1428–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants AI093589, AI116550, and P30 DK34854 to J.C.K. J.C.K. holds an Investigators in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund. Y.T. is supported by a postdoctoral fellowship from the Jane Coffin Childs Memorial Fund for Medical Research (the Merck Fellow).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. Kagan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tan, Y., Kagan, J.C. (2018). Biochemical Isolation of the Myddosome from Murine Macrophages. In: De Nardo, D., De Nardo, C. (eds) Innate Immune Activation. Methods in Molecular Biology, vol 1714. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7519-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7519-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7518-1

  • Online ISBN: 978-1-4939-7519-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics