Skip to main content

Glucose Transport: Methods for Interrogating GLUT4 Trafficking in Adipocytes

  • Protocol
  • First Online:
Glucose Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1713))

Abstract

In this chapter we detail methods for the systematic dissection of GLUT4 trafficking. The methods described have been optimized for cultured 3T3-L1 adipocytes, but can be readily adapted to other cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Burchfield JG, Lopez JA, Mele K, Vallotton P, Hughes WE (2010) Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy. Traffic 11(4):429–439. https://doi.org/10.1111/j.1600-0854.2010.01039.x

    Article  CAS  PubMed  Google Scholar 

  2. Burchfield JG, Lu J, Fazakerley DJ, Tan SX, Ng Y, Mele K, Buckley MJ, Han W, Hughes WE, James DE (2013) Novel systems for dynamically assessing insulin action in live cells reveals heterogeneity in the insulin response. Traffic 14(3):259–273. https://doi.org/10.1111/tra.12035

    Article  CAS  PubMed  Google Scholar 

  3. Martin S, Millar CA, Lyttle CT, Meerloo T, Marsh BJ, Gould GW, James DE (2000) Effects of insulin on intracellular GLUT4 vesicles in adipocytes: evidence for a secretory mode of regulation. J Cell Sci 113(Pt 19):3427–3438

    CAS  PubMed  Google Scholar 

  4. Stenkula KG, Lizunov VA, Cushman SW, Zimmerberg J (2010) Insulin controls the spatial distribution of GLUT4 on the cell surface through regulation of its postfusion dispersal. Cell Metab 12(3):250–259. https://doi.org/10.1016/j.cmet.2010.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muretta JM, Romenskaia I, Mastick CC (2008) Insulin releases Glut4 from static storage compartments into cycling endosomes and increases the rate constant for Glut4 exocytosis. J Biol Chem 283(1):311–323. https://doi.org/10.1074/jbc.M705756200

    Article  CAS  PubMed  Google Scholar 

  6. Govers R, Coster AC, James DE (2004) Insulin increases cell surface GLUT4 levels by dose dependently discharging GLUT4 into a cell surface recycling pathway. Mol Cell Biol 24(14):6456–6466. https://doi.org/10.1128/MCB.24.14.6456-6466.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. James DE, Brown R, Navarro J, Pilch PF (1988) Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature 333(6169):183–185. https://doi.org/10.1038/333183a0

    Article  CAS  PubMed  Google Scholar 

  8. Martin OJ, Lee A, McGraw TE (2006) GLUT4 distribution between the plasma membrane and the intracellular compartments is maintained by an insulin-modulated bipartite dynamic mechanism. J Biol Chem 281(1):484–490. https://doi.org/10.1074/jbc.M505944200

    Article  CAS  PubMed  Google Scholar 

  9. Fazakerley DJ, Holman GD, Marley A, James DE, Stockli J, Coster AC (2010) Kinetic evidence for unique regulation of GLUT4 trafficking by insulin and AMP-activated protein kinase activators in L6 myotubes. J Biol Chem 285(3):1653–1660. https://doi.org/10.1074/jbc.M109.051185

    Article  CAS  PubMed  Google Scholar 

  10. Wijesekara N, Tung A, Thong F, Klip A (2006) Muscle cell depolarization induces a gain in surface GLUT4 via reduced endocytosis independently of AMPK. Am J Physiol Endocrinol Metab 290(6):E1276–E1286. https://doi.org/10.1152/ajpendo.00573.2005

    Article  CAS  PubMed  Google Scholar 

  11. Brewer PD, Habtemichael EN, Romenskaia I, Mastick CC, Coster AC (2014) Insulin-regulated Glut4 translocation: membrane protein trafficking with six distinctive steps. J Biol Chem 289(25):17280–17298. https://doi.org/10.1074/jbc.M114.555714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davey JR, Humphrey SJ, Junutula JR, Mishra AK, Lambright DG, James DE, Stockli J (2012) TBC1D13 is a RAB35 specific GAP that plays an important role in GLUT4 trafficking in adipocytes. Traffic 13(10):1429–1441. https://doi.org/10.1111/j.1600-0854.2012.01397.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coster AC, Govers R, James DE (2004) Insulin stimulates the entry of GLUT4 into the endosomal recycling pathway by a quantal mechanism. Traffic 5(10):763–771. https://doi.org/10.1111/j.1600-0854.2004.00218.x

    Article  CAS  PubMed  Google Scholar 

  14. Jhun BH, Rampal AL, Liu H, Lachaal M, Jung CY (1992) Effects of insulin on steady state kinetics of GLUT4 subcellular distribution in rat adipocytes. Evidence of constitutive GLUT4 recycling. J Biol Chem 267(25):17710–17715

    CAS  PubMed  Google Scholar 

  15. Satoh S, Nishimura H, Clark AE, Kozka IJ, Vannucci SJ, Simpson IA, Quon MJ, Cushman SW, Holman GD (1993) Use of bismannose photolabel to elucidate insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells. Evidence that exocytosis is a critical site of hormone action. J Biol Chem 268(24):17820–17829

    CAS  PubMed  Google Scholar 

  16. Yang J, Holman GD (1993) Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3-L1 cells. J Biol Chem 268(7):4600–4603

    CAS  PubMed  Google Scholar 

  17. Burchfield JG, Lopez JA, Hughes WE (2012) Using total internal reflection fluorescence microscopy (TIRFM) to visualise insulin action. In: Badoer E (ed) T visualization techniques, Neuromethods, vol 70. Humana Press, New York, pp 97–109

    Chapter  Google Scholar 

  18. Schaffer DV, Koerber JT, Lim KI (2008) Molecular engineering of viral gene delivery vehicles. Annu Rev Biomed Eng 10:169–194. https://doi.org/10.1146/annurev.bioeng.10.061807.160514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sinn PL, Sauter SL, PB MC Jr (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors--design, biosafety, and production. Gene Ther 12(14):1089–1098. https://doi.org/10.1038/sj.gt.3302570

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44(1–2):5–14. https://doi.org/10.1007/s11517-005-0020-2

    Article  CAS  PubMed  Google Scholar 

  21. Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev Yu A (1992) Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys J 63(5):1320–1327. https://doi.org/10.1016/S0006-3495(92)81709-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van den Hoff MJ, Moorman AF, Lamers WH (1992) Electroporation in ‘intracellular’ buffer increases cell survival. Nucleic Acids Res 20(11):2902

    Article  PubMed  PubMed Central  Google Scholar 

  23. McKeel DW, Jarett L (1970) Preparation and characterization of a plasma membrane fraction from isolated fat cells. J Cell Biol 44(2):417–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simpson IA, Yver DR, Hissin PJ, Wardzala LJ, Karnieli E, Salans LB, Cushman SW (1983) Insulin-stimulated translocation of glucose transporters in the isolated rat adipose cells: characterization of subcellular fractions. Biochim Biophys Acta 763(4):393–407

    Article  CAS  PubMed  Google Scholar 

  25. Nikfarjam L, Farzaneh P (2012) Prevention and detection of mycoplasma contamination in cell culture. Cell J 13(4):203–212

    PubMed  Google Scholar 

  26. Olarerin-George AO, Hogenesch JB (2015) Assessing the prevalence of mycoplasma contamination in cell culture via a survey of NCBI’s RNA-seq archive. Nucleic Acids Res 43(5):2535–2542. https://doi.org/10.1093/nar/gkv136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. MacLeod RA, Dirks WG, Matsuo Y, Kaufmann M, Milch H, Drexler HG (1999) Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int J Cancer 83(4):555–563

    Article  CAS  PubMed  Google Scholar 

  28. Masters JR (2002) HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer 2(4):315–319. https://doi.org/10.1038/nrc775

    Article  CAS  PubMed  Google Scholar 

  29. Shewan AM, Marsh BJ, Melvin DR, Martin S, Gould GW, James DE (2000) The cytosolic C-terminus of the glucose transporter GLUT4 contains an acidic cluster endosomal targeting motif distal to the dileucine signal. Biochem J 350(Pt 1):99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shewan AM, van Dam EM, Martin S, Luen TB, Hong W, Bryant NJ, James DE (2003) GLUT4 recycles via a trans-Golgi network (TGN) subdomain enriched in Syntaxins 6 and 16 but not TGN38: involvement of an acidic targeting motif. Mol Biol Cell 14(3):973–986. https://doi.org/10.1091/mbc.E02-06-0315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Green H, Kehinde O (1975) An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5(1):19–27

    Article  CAS  PubMed  Google Scholar 

  32. Green H, Meuth M (1974) An established pre-adipose cell line and its differentiation in culture. Cell 3(2):127–133

    Article  CAS  PubMed  Google Scholar 

  33. Ozturk SS, Palsson BO (1990) Chemical decomposition of glutamine in cell culture media: effect of media type, pH, and serum concentration. Biotechnol Prog 6(2):121–128. https://doi.org/10.1021/bp00002a005

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Burchfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Norris, D.M., Geddes, T.A., James, D.E., Fazakerley, D.J., Burchfield, J.G. (2018). Glucose Transport: Methods for Interrogating GLUT4 Trafficking in Adipocytes. In: Lindkvist-Petersson, K., Hansen, J. (eds) Glucose Transport. Methods in Molecular Biology, vol 1713. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7507-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7507-5_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7506-8

  • Online ISBN: 978-1-4939-7507-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics