Skip to main content

Analysis of HspB1 (Hsp27) Oligomerization and Phosphorylation Patterns and Its Interaction with Specific Client Polypeptides

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

Human HspB1 (also denoted as Hsp27) belongs to the family of small (or stress) proteins (sHsps). The family, which contains ten members including αA,B-crystallin polypeptides, is characterized by a conserved C-terminal α-crystallin domain and molecular weights ranging from 20 to 40 kDa. Here, procedures are described for analyzing the dynamic oligomerization and phosphorylation patterns of HspB1 in cells exposed to different environments. Changes in the structural organization of HspB1 can reprogram its interaction with specific partner/client polypeptides. Methods are presented to analyze these interactions using tissue culture cells genetically modified to express different levels of this protein. In addition, the laboratory approaches presented here could be used to test the nine other human sHsp members as well as sHsps from other species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Hsp27/B1:

Heat shock protein 27/B1

Hsps:

heat shock proteins

sHsp:

small stress proteins

References

  1. Arrigo A-P, Landry J (1994) Expression and function of the low-molecular-weight heat shock proteins. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 335–373

    Google Scholar 

  2. Arrigo AP (2012) Pathology-dependent effects linked to small heat shock proteins expression. Scientifica 2012:185641. doi:10.6064/2012/185641

  3. Kappe G, Franck E, Verschuure P, Boelens WC, Leunissen JA et al (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones 8:53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ingolia TD, Craig EA (1982) Four small heat shock proteins are related to each other and to mammalian a-crystallin. Proc Natl Acad Sci U S A 79:2360–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the alpha-crystallin--small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    Article  PubMed  Google Scholar 

  6. Arrigo A-P, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059–5071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J (1999) HSP27 Multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274:9378–9385

    Article  CAS  PubMed  Google Scholar 

  8. Ehrnsperger M, Lilie H, Gaestel M, Buchner J (1999) The dynamics of hsp25 quaternary structure. Structure and function of different oligomeric species. J Biol Chem 274:14867–14874

    Article  CAS  PubMed  Google Scholar 

  9. Mehlen P, Hickey E, Weber L, Arrigo A-P (1997) Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNFα in NIH-3T3-ras cells. Biochem Biophys Res Comm 241:187–192

    Article  CAS  PubMed  Google Scholar 

  10. Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G et al (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956

    Article  CAS  PubMed  Google Scholar 

  11. Garrido C (2002) Size matters: of the small HSP27 and its large oligomers. Cell Death Differ 9:483–485

    Article  CAS  PubMed  Google Scholar 

  12. Arrigo AP (2007) The cellular "networking" of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv Exp Med Biol 594:14–26

    Article  PubMed  Google Scholar 

  13. Paul C, Simon S, Gibert B, Virot S, Manero F et al (2010) Dynamic processes that reflect anti-apoptotic strategies set up by HspB1 (Hsp27). Exp Cell Res 316:1535–1552

    Article  CAS  PubMed  Google Scholar 

  14. Horwitz J, Huang Q-L, Ding L-L (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A 89:10449–10453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jakob U, Gaestel M, Engels K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    CAS  PubMed  Google Scholar 

  16. Ganea E (2001) Chaperone-like activity of alpha-crystallin and other small heat shock proteins. Curr Protein Pept Sci 2:205–225

    Article  CAS  PubMed  Google Scholar 

  17. Carra S, Sivilotti M, Chavez Zobel AT, Lambert H, Landry J (2005) HspB8, A small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet 14:1659–1669

    Article  CAS  PubMed  Google Scholar 

  18. Bellyei S, Szigeti A, Pozsgai E, Boronkai A, Gomori E et al (2007) Preventing apoptotic cell death by a novel small heat shock protein. Eur J Cell Biol 86:161–171

    Article  CAS  PubMed  Google Scholar 

  19. Markossian KA, Yudin IK, Kurganov BI (2009) Mechanism of suppression of protein aggregation by alpha-Crystallin. Int J Mol Sci 10:1314–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Freeman BC, Morimoto RI (1996) The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J 15:2969–2979

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  22. Buchner J (1999) Hsp90 & Co. - a holding for folding. Trends Biochem Sci 24:136–141

    Article  CAS  PubMed  Google Scholar 

  23. Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arrigo AP, Gibert B (2012) HspB1 Dynamic phospho-oligomeric structure dependent interactome as cancer therapeutic target. Curr Mol Med 12:1151–1163

    Article  CAS  PubMed  Google Scholar 

  27. Gibert B, Eckel B, Fasquelle L, Moulin M, Bouhallier F et al (2012) Knock down of heat shock protein 27 (HspB1) induces degradation of several putative client proteins. PLoS One 7:e29719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arrigo AP, Gibert B (2013) Protein interactomes of three stress inducible small heat shock proteins: HspB1, HspB5 and HspB8. Int J Hyperth 29:409–422

    Article  CAS  Google Scholar 

  29. Arrigo AP (2013) Human small heat shock proteins: protein interactomes of homo- and hetero-oligomeric complexes: an update. FEBS Lett 587:1959–1969

    Article  CAS  PubMed  Google Scholar 

  30. Arrigo AP, Gibert B (2014) HspB1, HspB5 And HspB4 in human cancers: potent oncogenic role of some of their client proteins. Cancers (Basel) 6:333–365

    Article  Google Scholar 

  31. Arrigo AP, Ducarouge B, Lavial F, Gibert B (2015) Immense cellular implications associated to small stress proteins expression: impacts on human pathologies. In: Tanguay RM, Hightower LE (eds) The big book on small heat shock proteins, heat shock proteins 8 ©. Springer International Publishing, Switzerland, pp 27–83

    Chapter  Google Scholar 

  32. Pandey P, Farber R, Nakazawa A, Kumar S, Bharti A et al (2000) Hsp27 Functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 19:1975–1981

    Article  CAS  PubMed  Google Scholar 

  33. Cayado-Gutierrez N, Moncalero VL, Rosales EM, Beron W, Salvatierra EE et al (2012) Downregulation of Hsp27 (HSPB1) in MCF-7 human breast cancer cells induces upregulation of PTEN. Cell Stress Chaperones 18:243–249

    Article  PubMed  PubMed Central  Google Scholar 

  34. Neckers L, Mimnaugh E, Schulte TW (1999) Hsp90 As an anti-cancer target. Drug Resist Updat 2:165–172

    Article  CAS  PubMed  Google Scholar 

  35. Georgakis GV, Younes A (2005) Heat-shock protein 90 inhibitors in cancer therapy: 17AAG and beyond. Future Oncol 1:273–281

    Article  CAS  PubMed  Google Scholar 

  36. Cuesta R, Laroia G, Schneider RJ (2000) Chaperone Hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev 14:1460–1470

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nicholl ID, Quinlan RA (1994) Chaperone activity of alpha-Crystallins modulates intermediate filament assembly. EMBO J 13:945–953

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Arrigo AP, Firdaus WJ, Mellier G, Moulin M, Paul C et al (2005) Cytotoxic effects induced by oxidative stress in cultured mammalian cells and protection provided by Hsp27 expression. Methods 35:126–138

    Article  CAS  PubMed  Google Scholar 

  39. Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA et al (2000) Hsp27 Negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645–652

    Article  CAS  PubMed  Google Scholar 

  40. Arrigo AP (2005) In search of the molecular mechanism by which small stress proteins counteract apoptosis during cellular differentiation. J Cell Biochem 94:241–246

    Article  CAS  PubMed  Google Scholar 

  41. Mao YW, Liu JP, Xiang H, Li DW (2004) Human alphaA- and alphaB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11:512–526

    Article  CAS  PubMed  Google Scholar 

  42. Liu JP, Schlosser R, Ma WY, Dong Z, Feng H et al (2004) Human alphaA- and alphaB-crystallins prevent UVA-induced apoptosis through regulation of PKCalpha, RAF/MEK/ERK and AKT signaling pathways. Exp Eye Res 79:393–403

    Article  CAS  Google Scholar 

  43. Rane MJ, Pan Y, Singh S, Powell DW, Wu R et al (2003) Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 278:27828–27835

    Article  CAS  PubMed  Google Scholar 

  44. Wettstein G, Bellaye PS, Kolb M, Hammann A, Crestani B et al (2013) Inhibition of HSP27 blocks fibrosis development and EMT features by promoting snail degradation. FASEB J 27:1549–1560

    Article  CAS  PubMed  Google Scholar 

  45. Carra S (2009) The stress-inducible HspB8-Bag3 complex induces the eIF2alpha kinase pathway: implications for protein quality control and viral factory degradation? Autophagy 5:428–429

    Article  CAS  PubMed  Google Scholar 

  46. Duverger O, Paslaru L, Morange M (2004) HSP25 Is involved in two steps of the differentiation of PAM212 keratinocytes. J Biol Chem 279:10252–10260

    Article  CAS  PubMed  Google Scholar 

  47. Koteiche HA, McHaourab HS (2003) Mechanism of chaperone function in small heat-shock proteins. Phosphorylation-induced activation of two-mode binding in alphaB-crystallin. J Biol Chem 278:10361–10367

    Article  CAS  PubMed  Google Scholar 

  48. Aquilina JA, Benesch JL, Ding LL, Yaron O, Horwitz J et al (2004) Phosphorylation of alphaB-crystallin alters chaperone function through loss of dimeric substructure. J Biol Chem 279:28675–28680

    Article  CAS  PubMed  Google Scholar 

  49. Zantema A, Vries MV-D, Maasdam D, Bol S, Avd E (1992) Heat shock protein 27 and aB-cristallin can form a complex, which dissociates by heat shock. J Biol Chem 267:12936–12941

    CAS  PubMed  Google Scholar 

  50. Bukach OV, Glukhova AE, Seit-Nebi AS, Gusev NB (2009) Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20). Biochim Biophys Acta 1794:486–495

    Article  CAS  PubMed  Google Scholar 

  51. Mymrikov EV, Seit-Nebi AS, Gusev NB (2011) Large potentials of small heat shock proteins. Physiol Rev 91:1123–1159

    Article  CAS  PubMed  Google Scholar 

  52. Mymrikov EV, Seit-Nebi AS, Gusev NB (2012) Heterooligomeric complexes of human small heat shock proteins. Cell Stress Chaperones 17:157–169

    Article  CAS  PubMed  Google Scholar 

  53. Sun TX, Liang JJ (1998) Intermolecular exchange and stabilization of recombinant human alphaA- and alphaB-crystallin. J Biol Chem 273:286–290

    Article  CAS  PubMed  Google Scholar 

  54. Saha S, Das KP (2004) Relationship between chaperone activity and oligomeric size of recombinant human alphaA- and alphaB-crystallin: a tryptic digestion study. Proteins 57:610–617

    Article  CAS  PubMed  Google Scholar 

  55. Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S et al (2002) Hsp27 As a negative regulator of cytochrome C release. Mol Cell Biol 22:816–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mehlen P, Préville X, Chareyron P, Briolay J, Klemenz R et al (1995) Constitutive expression of human hsp27, drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol 154:363–374

    CAS  PubMed  Google Scholar 

  57. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553.

    Google Scholar 

  58. Simon S, Dimitrova V, Gibert B, Virot S, Mounier N et al (2013) Analysis of the dominant effects mediated by wild type or R120G mutant of alphaB-crystallin (HspB5) towards Hsp27 (HspB1). PLoS One 8:e70545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mehlen P, Mehlen A, Guillet D, Préville X, Arrigo A-P (1995) Tumor necrosis factor-a induces changes in the phosphorylation, cellular localization, and oligomerization of human hsp27, a stress protein that confers cellular resistance to this cytokine. J Cell Biochem 58:248–259

    Article  CAS  PubMed  Google Scholar 

  60. Pichon S, Bryckaert M, Berrou E (2004) Control of actin dynamics by p38 MAP kinase - Hsp27 distribution in the lamellipodium of smooth muscle cells. J Cell Sci 117:2569–2577

    Article  CAS  PubMed  Google Scholar 

  61. Diaz-Latoud C, Buache E, Javouhey E, Arrigo AP (2005) Substitution of the unique cysteine residue of murine hsp25 interferes with the protective activity of this stress protein through inhibition of dimer formation. Antioxid Redox Signal 7:436–445

    Article  CAS  PubMed  Google Scholar 

  62. Arrigo A-P, Welch W (1987) Characterization and purification of the small 28,000-dalton mammalian heat shock protein. J Biol Chem 262:15359–15369

    CAS  PubMed  Google Scholar 

  63. Merendino AM, Paul C, Vignola AM, Costa MA, Melis M et al (2002) Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress-mediated apoptosis: possible implication in asthma. Cell Stress Chaperones 7:269–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gibert B, Eckel B, Gonin V, Goldschneider D, Fombonne J et al (2012) Targeting heat shock protein 27 (HspB1) interferes with bone metastasis and tumour formation in vivo. Br J Cancer 107:63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André-Patrick Arrigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arrigo, AP. (2018). Analysis of HspB1 (Hsp27) Oligomerization and Phosphorylation Patterns and Its Interaction with Specific Client Polypeptides. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics