Skip to main content

Construction of Macaque Immune-Libraries

  • Protocol
  • First Online:
Phage Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1701))

Abstract

Rapidly after the clinical success of the first murine therapeutic antibody licensed in 1985 (muromomab-CD3), the first limits of the therapeutic use of antibodies deriving from hybridoma technology appeared. Indeed, the nonhuman nature of these therapeutic antibodies makes them immunogenic when administrated to patients, which develop anti-drug antibodies (ADA). If repeated drug-administrations are needed, the immune response will accelerate the elimination of the drug, leading to a therapeutic failure, or in the worst case to an anaphylactic reaction against the murine protein. Several antibody generations were then developed to obtain better-tolerated molecules: chimeric, humanized, and fully human antibodies. The first antibody generation is fully based on cellular technology (mice hybridoma technology), but the next generations are improved by molecular engineering. Immune antibody phage-display libraries are one successful approach to isolating such engineered antibodies. One strategy to isolate high-affinity and well-tolerated antibodies when no immunized patients are available is based on the phage-display-screening of immune libraries deriving from immunized nonhuman primates, which are phylogenetically close to humans. This chapter presents the strategy for the construction of macaque antibody immune-libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  PubMed  Google Scholar 

  2. Emmons C, Hunsicker LG (1987) Muromonab-CD3 (Orthoclone OKT3): the first monoclonal antibody approved for therapeutic use. Iowa Med 77(2):78–82

    CAS  PubMed  Google Scholar 

  3. Presta LG (2006) Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev 58(5–6):640–656

    Article  CAS  PubMed  Google Scholar 

  4. Getts DR, Getts MT, McCarthy DP, Chastain EML, Miller SD (2010) Have we overestimated the benefit of human(ized) antibodies? MAbs 2(6):682–694

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ma B, Osborn MJ, Avis S et al (2013) Human antibody expression in transgenic rats: comparison of chimeric IgH loci with human VH, D and JH but bearing different rat C-gene regions. J Immunol Methods 400–401:78–86

    Article  PubMed  Google Scholar 

  6. Brüggemann M, Osborn MJ, Ma B et al (2015) Human antibody production in transgenic animals. Arch Immunol Ther Exp (Warsz) 63(2):101–108

    Article  Google Scholar 

  7. Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8(7):1177–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23(9):1105–1116

    Article  CAS  PubMed  Google Scholar 

  9. Chan CEZ, Lim APC, MacAry PA, Hanson BJ (2014) The role of phage display in therapeutic antibody discovery. Int Immunol 26(12):649–657

    Article  CAS  PubMed  Google Scholar 

  10. Kügler J, Wilke S, Meier D et al (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15:10

    Article  PubMed  PubMed Central  Google Scholar 

  11. Amersdorfer P, Wong C, Smith T et al (2002) Genetic and immunological comparison of anti-botulinum type a antibodies from immune and non-immune human phage libraries. Vaccine 20(11–12):1640–1648

    Article  CAS  PubMed  Google Scholar 

  12. Duan T, Ferguson M, Yuan L, Xu F, Li G (2009) Human monoclonal fab antibodies against West Nile virus and its neutralizing activity analyzed in vitro and in vivo. J Antivir Antiretrovir 1(1):36–42

    Article  CAS  PubMed  Google Scholar 

  13. Thie H, Toleikis L, Li J et al (2011) Rise and fall of an anti-MUC1 specific antibody. PLoS One 6(1):e15921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trott M, Weiβ S, Antoni S et al (2014) Functional characterization of two scFv-fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody. PLoS One 9(5):e97478

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kawamura S, Omoto K, Ueda S (1990) Evolutionary hypervariability in the hinge region of the immunoglobulin alpha gene. J Mol Biol 215(2):201–206

    Article  CAS  PubMed  Google Scholar 

  16. Andris JS, Miller AB, Abraham SR et al (1997) Variable region gene segment utilization in rhesus monkey hybridomas producing human red blood cell-specific antibodies: predominance of the VH4 family but not VH4-21 (V4-34). Mol Immunol 34(3):237–253

    Article  CAS  PubMed  Google Scholar 

  17. Thullier P, Chahboun S, Pelat T (2010) A comparison of human and macaque (Macaca Mulatta) immunoglobulin germline V regions and its implications for antibody engineering. MAbs 2(5):528–538

    Article  PubMed  PubMed Central  Google Scholar 

  18. Avril A, Froude JW, Mathieu J, Pelat T, Thullier P (2014) Isolation of antibodies from non-human primates for clinical use. Curr Drug Discov Technol 11(1):20–27

    Article  CAS  PubMed  Google Scholar 

  19. Thullier P, Huish O, Pelat T, ACR M (2010) The humanness of macaque antibody sequences. J Mol Biol 396(5):1439–1450

    Article  CAS  PubMed  Google Scholar 

  20. Poole JA, Meng J, Reff M, Spellman MC, Rosenwasser LJ (2005) Anti-CD23 monoclonal antibody, lumiliximab, inhibited allergen-induced responses in antigen-presenting cells and T cells from atopic subjects. J Allergy Clin Immunol 116(4):780–788

    Article  CAS  PubMed  Google Scholar 

  21. Gottlieb AB, Kang S, Linden KG, et al. Evaluation of safety and clinical activity of multiple doses of the anti-CD80 monoclonal antibody, galiximab, in patients with moderate to severe plaque psoriasis. Clin Immunol 2004;111(1):28–37

    Google Scholar 

  22. Mould DR, Davis CB, Minthorn EA et al (1999) A population pharmacokinetic-pharmacodynamic analysis of single doses of clenoliximab in patients with rheumatoid arthritis. Clin Pharmacol Ther 66(3):246–257

    Article  CAS  PubMed  Google Scholar 

  23. Bugelski PJ, Herzyk DJ, Rehm S et al (2000) Preclinical development of keliximab, a Primatized anti-CD4 monoclonal antibody, in human CD4 transgenic mice: characterization of the model and safety studies. Hum Exp Toxicol 19(4):230–243

    Article  CAS  PubMed  Google Scholar 

  24. Miethe S, Rasetti-Escargueil C, Avril A et al (2015) Development of human-like scFv-fc neutralizing Botulinum neurotoxin E. PLoS One 10(10):e0139905

    Article  PubMed  PubMed Central  Google Scholar 

  25. Avril A, Miethe S, Popoff MR et al Isolation of nanomolar scFvs of non-human primate origin, cross-neutralizing botulinum neurotoxins A1 and A2 by targeting their heavy chain. BMC Biotechnol 15(1):86

    Google Scholar 

  26. Noy-Porat T, Rosenfeld R, Ariel N et al (2016) Isolation of anti-ricin protective antibodies exhibiting high affinity from immunized non-human primates. Toxins (Basel) 8(3)

    Google Scholar 

  27. Pelat T, Hust M, Hale M et al (2009) Isolation of a human-like antibody fragment (scFv) that neutralizes ricin biological activity. BMC Biotechnol 9:60

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pelat T, Hust M, Laffly E et al (2007) High-affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother 51(8):2758–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hust M, Meyer T, Voedisch B et al (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152(4):159–170

    Article  CAS  PubMed  Google Scholar 

  30. Rasetti-Escargueil C, Avril A, Chahboun S et al (2015) Development of human-like scFv-fc antibodies neutralizing Botulinum toxin serotype B. MAbs 7(6):1161–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hust M, Dübel S (2004) Mating antibody phage display with proteomics. Trends Biotechnol 22(1):8–14

    Article  CAS  PubMed  Google Scholar 

  32. Qi H, Lu H, Qiu H-J, Petrenko V, Liu A (2012) Phagemid vectors for phage display: properties, characteristics and construction. J Mol Biol 417(3):129–143

    Article  CAS  PubMed  Google Scholar 

  33. Zhao A, Tohidkia MR, Siegel DL, Coukos G, Omidi Y (2016) Phage antibody display libraries: a powerful antibody discovery platform for immunotherapy. Crit Rev Biotechnol 36(2):276–289

    Article  CAS  PubMed  Google Scholar 

  34. Ehrlich PH, Moustafa ZA, Justice JC et al (1988) Human and primate monoclonal antibodies for in vivo therapy. Clin Chem 34(9):1681–1688

    CAS  PubMed  Google Scholar 

  35. Ehrlich PH, Moustafa ZA, Justice JC, Harfeldt KE, Ostberg L (1988) Further characterization of the fate of human monoclonal antibodies in rhesus monkeys. Hybridoma 7(4):385–395

    Article  CAS  PubMed  Google Scholar 

  36. Ehrlich PH, Harfeldt KE, Justice JC, Moustafa ZA, Ostberg L (1987) Rhesus monkey responses to multiple injections of human monoclonal antibodies. Hybridoma 6(2):151–160

    Article  CAS  PubMed  Google Scholar 

  37. Reichert JM (2010) Antibodies to watch in 2010. MAbs 2(1):84–100

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ranuio J, Estrellado A, Harris S et al (2015) Anti-drug antibody responses to Lumiliximab are not detected in relapsed refractory CLL patients treated with Lumiliximab in combination with FCR in a phase 1/II study. Blood 112(11):4210

    Google Scholar 

  39. Abhinandan KR, Martin ACR (2007) Analyzing the “degree of humanness” of antibody sequences. J Mol Biol 369(3):852–862

    Article  CAS  PubMed  Google Scholar 

  40. Storz U (2016) Rituximab: how approval history is reflected by a corresponding patent filing strategy. MAbs 6(4):820–837

    Article  Google Scholar 

  41. Bazan J, Całkosiński I, Gamian A (2012) Phage display--a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccin Immunother 8(12):1817–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hust M, Jostock T, Menzel C et al (2007) Single chain fab (scFab) fragment. BMC Biotechnol 7:14

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pelat T, Hust M, Thullier P (2010) Antibody engineering. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

This review contains updated and revised parts of Pelat et al. (2010) [43].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Avril .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Avril, A., Miethe, S., Hust, M., Pelat, T. (2018). Construction of Macaque Immune-Libraries. In: Hust, M., Lim, T. (eds) Phage Display. Methods in Molecular Biology, vol 1701. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7447-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7447-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7446-7

  • Online ISBN: 978-1-4939-7447-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics