Skip to main content

Upgrading Affinity Screening Experiments by Analysis of Next-Generation Sequencing Data

  • Protocol
  • First Online:
Phage Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1701))

Abstract

Computational analysis of next-generation sequencing data (NGS; also termed deep sequencing) enables the analysis of affinity screening procedures (or biopanning experiments) in an unprecedented depth and therewith improves the identification of relevant peptide or antibody ligands with desired binding or functional properties. Virtually any selection methodology employing the direct physical linkage of geno- and phenotype to select for desired properties can be leveraged by computational analysis. This article describes a concept how relevant ligands can be identified by harnessing NGS data. Thereby, the focus lays on improved ligand identification and describes how NGS data can be structured for single-round analysis as well as for comparative analysis of multiple selection rounds. Especially, the comparative analysis opens new avenues in the field of ligand identification. The concept of computational analysis is described at the example of the software tool “AptaAnalyzer TM .” This intuitive tool was developed for scientists without special computer skills and makes the computational approach accessible to a broad user range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kahvejian A, Quackenbush J, Thompson JF (2008) What would you do if you could sequence everything? Nat Biotechnol 26:1125–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mannocci L, Zhang Y, Scheuermann J, Leimbacher M, De Bellis G, Rizzi E et al (2008) High-throughput sequencing allows the identification of binding molecules isolated from DNA-encoded chemical libraries. Proc Natl Acad Sci U S A 105:17670–17675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dower WJ, Mattheakis LC (2002) In vitro selection as a powerful tool for the applied evolution of proteins and peptides. Curr Opin Chem Biol 6:390–398

    Article  CAS  PubMed  Google Scholar 

  4. Van Blarcom T, Rossi A, Foletti D, Sundar P, Pitts S, Bee C, Melton Witt J, Melton Z, Hasa-Moreno A, Shaughnessy L, Telman D, Zhao L, Cheung WL, Berka J, Zhai W, Strop P, Chaparro-Riggers J, Shelton DL, Pons J, Rajpal A (2015) Precise and efficient antibody epitope determination through library design, yeast display and next-generation sequencing. J Mol Biol 427:1513–1153

    Article  PubMed  Google Scholar 

  5. Olson CA, Nie J, Diep J, Al-Shyoukh I, Takahashi TT, Al-Mawsawi LQ, Bolin JM, Elwell AL, Swanson S, Stewart R, Thomson JA, Soh HT, Roberts RW, Sun R (2012) Single-round, multiplexed antibody mimetic design through mRNA display. Angew Chem Int Ed Engl 51:12449–12453

    Article  CAS  PubMed  Google Scholar 

  6. t’Hoen PA, Jirka SM, Ten Broeke BR, Schultes EA, Aguilera B, Pang KH et al (2012) Phage display screening without repetitious selection rounds. Anal Biochem 421:622–631

    Article  Google Scholar 

  7. Dias-Neto E, Nunes DN, Giordano RJ, Sun J, Botz GH, Yang K et al (2009) Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis. PLoS One 4:e8338

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ravn U, Gueneau F, Baerlocher L, Osteras M, Desmurs M, Malinge P et al (2010) By-passing in vitro screening--next generation sequencing technologies applied to antibody display and in silico candidate selection. Nucleic Acids Res 38:e193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xuelian B, Jihye K, Seungmin K, Wankyu K, Hyunbo S (2015) A novel human scFv library with non-combinatorial synthetic CDR diversity. PLoS One 10:e0141045

    Article  Google Scholar 

  10. Ernst A, Gfeller D, Kan Z, Seshagiri S, Kim PM, Bader GD, Sidhu SS (2010) Coevolution of PDZ domain-ligand interactions analyzed by high-throughput phage display and deep sequencing. Mol BioSyst 6:1782–1790

    Article  CAS  PubMed  Google Scholar 

  11. Getz JA, Rice JJ, Daugherty PS (2011) Protease-resistant peptide ligands from a knottin scaffold library. ACS Chem Biol 6:837–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zoller F, Markert A, Barthe P, Hebling U, Altmann A, Lindner T, Mier W, Haberkorn U (2013) A disulfide-constrained miniprotein with striking tumor-binding specificity developed by ribosome display. Angew Chem Int Ed Engl 52:11760–11764

    Article  CAS  PubMed  Google Scholar 

  13. Zoller F, Haberkorn U, Mier W (2011) Miniproteins as phage display-scaffolds for clinical applications. Molecules 16:2467–2485

    Article  CAS  PubMed  Google Scholar 

  14. Liu GW, Livesay BR, Kacherovsky NA, Cieslewicz M, Lutz E, Waalkes A, Jensen MC, Salipante SJ, Pun SH (2015) Efficient identification of murine M2 macrophage peptide targeting ligands by phage display and next-generation sequencing. Bioconjug Chem 26:1811–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Menendez A, Scott JK (2005) The nature of target-unrelated peptides recovered in the screening of phage-displayed random peptide libraries with antibodies. Anal Biochem 336:145–157

    Article  CAS  PubMed  Google Scholar 

  16. Matochko WL, Cory Li S, Tang SK, Derda R (2014) Prospective identification of parasitic sequences in phage display screens. Nucleic Acids Res 42:1784–1798

    Article  CAS  PubMed  Google Scholar 

  17. Vodnik M, Zager U, Strukelj B, Lunder M (2011) Phage display: selecting straws instead of a needle from a haystack. Molecules 16:790–817

    Article  CAS  PubMed  Google Scholar 

  18. Blind M, Blank M (2015) Aptamer selection technology and recent advances. Mol Ther Nucleic Acids 4:e223

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pareek CS, Smoczynski R, Trtyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blank M (2016) Next-generation analysis of deep sequencing data: bringing light into the black box of SELEX experiments. Methods Mol Biol 1380:85–95

    Article  CAS  PubMed  Google Scholar 

  21. Lal D, Verma M (2017) Large-scale sequence comparison. Methods Mol Biol 1525:191–224

    Article  PubMed  Google Scholar 

  22. Matochko WL, Derda R (2015) Next-generation sequencing of phage-displayed peptide libraries. Methods Mol Biol 1248:249–266

    Article  CAS  PubMed  Google Scholar 

  23. Brinton LT, Bauknight DK, Dasa SSK, Kelly KA (2016) PHASTpep: analysis software for discovery of cell-selective peptides via phage display and next-generation sequencing. PLoS One 11:e0155244

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moreau V, Granier C, Villard S, Laune D, Molina F (2006) Discontinuous epitope prediction based on mimotope analysis. Bioinformatics 22:1088–1095

    Article  CAS  PubMed  Google Scholar 

  25. Halperin I, Wolfson H, Nussinov R (2003) SiteLight: binding-site prediction using phage display libraries. Protein Sci 12:1344–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pizzi E, Cortese R, Tramontano A (1995) Mapping epitopes on protein surfaces. Biopolymers 36:675–680

    Article  CAS  PubMed  Google Scholar 

  27. Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43:39–49

    Article  Google Scholar 

  28. Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91

    CAS  PubMed  Google Scholar 

  29. Edwards RJ, Davey NE, Shields DC (2007) SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins. PLoS One 2:e967

    Article  PubMed  PubMed Central  Google Scholar 

  30. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Blank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grohmann, C., Blank, M. (2018). Upgrading Affinity Screening Experiments by Analysis of Next-Generation Sequencing Data. In: Hust, M., Lim, T. (eds) Phage Display. Methods in Molecular Biology, vol 1701. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7447-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7447-4_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7446-7

  • Online ISBN: 978-1-4939-7447-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics