Skip to main content

Phage Display and Selections on Cells

  • Protocol
  • First Online:
Phage Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1701))

Abstract

Antibody identification by phage display on protein or peptide targets is well established and many protocols are available. But there are many targets that cannot be expressed recombinantly or, like peptides, do not reflect correct folding of the protein. Most of these targets are cell surface receptors. Here, we describe a protocol for a panning strategy on cells to obtain specific binders to cell surface receptors. A depletion step is included to prevent enrichment of antibodies that bind to unwanted targets. Each step of the protocol is explained and variations of this protocol are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  2. Murphy AJ, Macdonald LE, Stevens S et al (2014) Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci U S A 111:5153–5158. https://doi.org/10.1073/pnas.1324022111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Macdonald LE, Karow M, Stevens S et al (2014) Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes. Proc Natl Acad Sci U S A 111:5147–5152. https://doi.org/10.1073/pnas.1323896111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brüggemann M, Osborn MJ, Ma B et al (2015) Human antibody production in transgenic animals. Arch Immunol Ther Exp 63:101–108. https://doi.org/10.1007/s00005-014-0322-x

    Article  Google Scholar 

  5. Hanes J, Jermutus L, Weber-Bornhauser S et al (1998) Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci 95:14130–14135. https://doi.org/10.1073/pnas.95.24.14130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Breitling F, Dübel S, Seehaus T et al (1991) A surface expression vector for antibody screening. Gene 104:147–153

    Article  CAS  PubMed  Google Scholar 

  7. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    Article  CAS  PubMed  Google Scholar 

  8. Hoogenboom HR, Winter G (1992) By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol 227:381–388

    Article  CAS  PubMed  Google Scholar 

  9. Funahashi S-I, Suzuki Y, Nakano K et al (2017) Generation and characterization of monoclonal antibodies against human LGR6. J Biochem (Tokyo) 161(4):361–368. https://doi.org/10.1093/jb/mvw077

    Article  Google Scholar 

  10. Khademi F, Mostafaie A, Parvaneh S et al (2017) Construction and characterization of monoclonal antibodies against the extracellular domain of B-lymphocyte antigen CD20 using DNA immunization method. Int Immunopharmacol 43:23–32. https://doi.org/10.1016/j.intimp.2016.11.035

    Article  CAS  PubMed  Google Scholar 

  11. Yoon H, Song JM, Ryu CJ et al (2012) An efficient strategy for cell-based antibody library selection using an integrated vector system. BMC Biotechnol 12:62. https://doi.org/10.1186/1472-6750-12-62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cao J, Zhao P, Miao XH et al (2003) Phage display selection on whole cells yields a small peptide specific for HCV receptor human CD81. Cell Res 13:473–479. https://doi.org/10.1038/sj.cr.7290190

    Article  CAS  PubMed  Google Scholar 

  13. Shukla GS, Krag DN (2005) Phage display selection for cell-specific ligands: development of a screening procedure suitable for small tumor specimens. J Drug Target 13:7–18. https://doi.org/10.1080/10611860400020464

    Article  CAS  PubMed  Google Scholar 

  14. Eisenhardt SU, Schwarz M, Bassler N, Peter K (2007) Subtractive single-chain antibody (scFv) phage-display: tailoring phage-display for high specificity against function-specific conformations of cell membrane molecules. Nat Protoc 2:3063–3073. https://doi.org/10.1038/nprot.2007.455

    Article  CAS  PubMed  Google Scholar 

  15. Larsen SA, Meldgaard T, Fridriksdottir AJR et al (2016) Raising an antibody specific to breast cancer subpopulations using phage display on tissue sections. Cancer Genomics Proteomics 13:21–30

    CAS  PubMed  Google Scholar 

  16. Jones ML, Alfaleh MA, Kumble S et al (2016) Targeting membrane proteins for antibody discovery using phage display. Sci Rep 6:26240. https://doi.org/10.1038/srep26240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hust M, Meyer T et al (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152(4):159–170. https://doi.org/10.1016/j.jbiotec.2010.09.945

    Article  CAS  PubMed  Google Scholar 

  18. Kügler J, Wilke S et al (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15:10. https://doi.org/10.1186/s12896-015-0125-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Frenzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fahr, W., Frenzel, A. (2018). Phage Display and Selections on Cells. In: Hust, M., Lim, T. (eds) Phage Display. Methods in Molecular Biology, vol 1701. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7447-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7447-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7446-7

  • Online ISBN: 978-1-4939-7447-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics