Skip to main content

Optogenetic Control of Intracellular Signaling: Class II Opsins

  • Protocol
  • First Online:
Optogenetics: A Roadmap

Part of the book series: Neuromethods ((NM,volume 133))

Abstract

Opsins are classified as either class I (microbial) or II (seven transmembrane) opsins. Class I opsins include channelrhodopsin and halorhodopsin, and are reviewed in previous chapters. Class II opsins are G-protein-coupled receptors (GPCR) and include the vertebrate opsins that underlie mammalian, including human, vision. Chimeras made of class II opsins and other GPCRs allow the precise control of secondary messengers of intracellular signaling like cyclic adenosine monophosphate (cAMP) or the inositol triphosphate (IP3)/calcium system. These allow for optogenetic control of cellular behavior in addition to the excitation/inhibition axis that channelrhodopsin and halorhodopsin offer. The fast kinetics of light transduction within these single-element chimeras allows temporally precise control of GPCR signaling. Spatially precise control can be achieved via small optic fibers and microscopic control of the illumination field. We here give an overview about recent developments of class II opsin/GPCR chimera as promising tools for molecular and behavioral manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grobner G, Burnett IJ, Glaubitz C, Choi G, Mason AJ, Watts A (2000) Observations of light-induced structural changes of retinal within rhodopsin. Nature 405(6788):810–813

    Article  CAS  PubMed  Google Scholar 

  2. Kobilka BK, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz RJ (1988) Chimeric alpha 2-,beta 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 240(4857):1310–1316

    Article  CAS  PubMed  Google Scholar 

  3. Kim JM, Hwa J, Garriga P, Reeves PJ, RajBhandary UL, Khorana HG (2005) Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. Biochemistry 44(7):2284–2292. doi:10.1021/bi048328i

    Article  CAS  PubMed  Google Scholar 

  4. Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458(7241):1025–1029. doi:10.1038/nature07926

    Article  CAS  PubMed  Google Scholar 

  5. Siuda ER, McCall JG, Al-Hasani R, Shin G, Il Park S, Schmidt MJ, Anderson SL, Planer WJ, Rogers JA, Bruchas MR (2015) Optodynamic simulation of β-adrenergic receptor signalling. Nat Commun 6:8480. doi:10.1038/ncomms9480. http://www.nature.com/articles/ncomms9480#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siuda ER, Al-Hasani R, McCall JG, Bhatti DL, Bruchas MR (2016) Chemogenetic and optogenetic activation of gαs signaling in the basolateral amygdala induces acute and social anxiety-like states. Neuropsychopharmacology 41(8):2011–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Figueiredo M, Lane S, Stout RF Jr, Liu B, Parpura V, Teschemacher AG, Kasparov S (2014) Comparative analysis of optogenetic actuators in cultured astrocytes. Cell Calcium 56(3):208–214. doi:10.1016/j.ceca.2014.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oh E, Maejima T, Liu C, Deneris E, Herlitze S (2010) Substitution of 5-HT1A receptor signaling by a light-activated G protein-coupled receptor. J Biol Chem 285(40):30825–30836. doi:10.1074/jbc.M110.147298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Siuda Edward R, Copits Bryan A, Schmidt Martin J, Baird Madison A, Al-Hasani R, Planer William J, Funderburk Samuel C, McCall Jordan G, Gereau RW IV, Bruchas Michael R (2015) Spatiotemporal Control of Opioid Signaling and Behavior. Neuron 86(4):923–935. doi:10.1016/j.neuron.2015.03.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Wyk M, Pielecka-Fortuna J, Löwel S, Kleinlogel S (2015) Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol 13(5):e1002143. doi:10.1371/journal.pbio.1002143

    Article  PubMed  PubMed Central  Google Scholar 

  11. Karunarathne WKA, Giri L, Kalyanaraman V, Gautam N (2013) Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension. Proc Natl Acad Sci 110(17):E1565–E1574. doi:10.1073/pnas.1220697110

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu Y, Hyun Y-M, Lim K, Lee H, Cummings RJ, Gerber SA, Bae S, Cho TY, Lord EM, Kim M (2014) Optogenetic control of chemokine receptor signal and T-cell migration. Proc Natl Acad Sci 111(17):6371–6376. doi:10.1073/pnas.1319296111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schroder-Lang S, Schwarzel M, Seifert R, Strunker T, Kateriya S, Looser J, Watanabe M, Kaupp UB, Hegemann P, Nagel G (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4(1):39–42. doi:10.1038/nmeth975

    Article  PubMed  Google Scholar 

  14. Stierl M, Stumpf P, Udwari D, Gueta R, Hagedorn R, Losi A, Gärtner W, Petereit L, Efetova M, Schwarzel M, Oertner TG, Nagel G, Hegemann P (2011) Light modulation of cellular camp by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286(2):1181–1188. doi:10.1074/jbc.M110.185496

    Article  CAS  PubMed  Google Scholar 

  15. Grusch M, Schelch K, Riedler R, Reichhart E, Differ C, Berger W, Inglés-Prieto Á, Janovjak H (2014) Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J 33(15):1713–1726. doi:10.15252/embj.201387695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bruegmann T, van Bremen T, Vogt CC, Send T, Fleischmann BK, Sasse P (2015) Optogenetic control of contractile function in skeletal muscle. Nat Commun 6:7153. doi:10.1038/ncomms8153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klarenbeek JB, Goedhart J, Hink MA, Gadella TWJ, Jalink K (2011) A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One 6(4):e19170. doi:10.1371/journal.pone.0019170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Ellwardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ellwardt, E., Airan, R.D. (2018). Optogenetic Control of Intracellular Signaling: Class II Opsins. In: Stroh, A. (eds) Optogenetics: A Roadmap. Neuromethods, vol 133. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7417-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7417-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7415-3

  • Online ISBN: 978-1-4939-7417-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics