Skip to main content

Analyzing the Vacuolar Membrane (Tonoplast) Proteome

  • Protocol
  • First Online:
Plant Membrane Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1696))

Abstract

A large number of proteins in the vacuolar membrane (VM; tonoplast), including transporters and receptors, support the various functions of the vacuole. Molecular analysis of membrane proteins is an essential step in understanding how the vacuole operates but so far only a small number of tonoplast proteins have been identified at the molecular level. Accordingly, mutant lines with altered level of tonoplast proteins for characterizing their physiological roles have been developed sparsely. Also, detecting activities of tonoplast proteins remains difficult as it requires a certain degree of enrichment of this organelle fraction. In order to extend our understanding of the vacuole, several groups have turned to proteomic analysis of tonoplast membrane proteins. A primary requirement of any organelle analysis by proteomics is that the purity of the isolated organelle needs to be high so that its composition can be accurately analyzed with mass spectrometry. In this chapter, we describe a simple method for the isolation of intact vacuoles and subsequent proteome analysis of the VM fraction of cells from Arabidopsis suspension cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shimaoka T, Ohnishi M, Sazuka T, Mitsuhashi N, Hara-Nishimura I, Shimazaki K, Maeshima M, Yokota A, Tomizawa K, Mimura T (2004) Isolation of intact vacuole and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol 45:672–683

    Article  CAS  PubMed  Google Scholar 

  3. Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 6:394–412

    Article  CAS  PubMed  Google Scholar 

  4. Schmidt UG, Endler A, Schelbert S, Brunner A, Schnell M, Neuhaus HE, Marty-Mazars D, Marty F, Baginsky S, Martinoia E (2007) Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiol 145:216–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Whiteman SA, Serazetdinova L, Jones AM, Sanders D, Rathjen J, Peck SC, Frans JM, Maathuis D (2008) Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. Proteomics 8:3536–3547

    Article  CAS  PubMed  Google Scholar 

  6. Martinoia E, Meyer S, De Angeli A, Nagy R (2012) Vacuolar transporters in their physiological context. Annu Rev Plant Biol 63:183–213

    Article  CAS  PubMed  Google Scholar 

  7. Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG (2006) Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol 141:196–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simons K, Ikonen E (1997) Functional raft in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  9. Peskan T, Westermann M, Olelmüller R (2000) Identification of low-density Triton X-100-insoluble plasma membranes in higher plants. Eur J Biochem 267:6989–6995

    Article  CAS  PubMed  Google Scholar 

  10. Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ (2004) Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277–36286

    Article  CAS  PubMed  Google Scholar 

  11. Bhat RA, Panstruga R (2005) Lipid rafts in plants. Planta 223:5–19

    Article  CAS  PubMed  Google Scholar 

  12. Borner GH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membrane in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Laloi M, Perret AM, Chatre L, Melser S, Cantrel C, Vaultier MN, Zachowski A, Bathany K, Schmitter JM, Vallet M, Lessire R, Hartmann MA, Moreau P (2007) Insight into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol 143:461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zappel NF, Panstruga R (2008) Heterogeneity and lateral compartmentalization of plant plasma membranes. Curr Opin Plant Biol 11:632–640

    Article  CAS  PubMed  Google Scholar 

  15. Simon-Plas F, Perraki A, Bayer E, Gerbeau-Pissot P, Mongrand S (2011) An update on plant membrane rafts. Curr Opin Plant Biol 14:642–649

    Article  CAS  PubMed  Google Scholar 

  16. Cacas JL, Furt F, Le Guédard M, Schmitter JM, Buré C, Gerbeau-Pissot P, Patrick Moreaua P, Bessoulea JJ, Simon-Plasc F, Mongranda S (2012) Lipids of plant membrane rafts. Prog Lipid Res 51:272–299

    Article  CAS  PubMed  Google Scholar 

  17. Ozolina NV, Nesterkina IS, Kolesnikova EV, Salyaev RK, Nurminsky VN, Rakevich AL, Martynovich EF, Chernyshov MY (2013) Tonoplast of Beta vulgaris L. contains detergent-resistant membrane microdomains. Planta 237:859–871

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida K, Ohnishi M, Fukao Y, Okazaki Y, Fujiwara M, Song C, Nakanishi Y, Saito K, Shimmen T, Suzaki T, Hayashi F, Fukaki H, Maeshima M, Mimura T (2013) Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins. Plant Cell Physiol 54(10):1571–1584

    Article  CAS  PubMed  Google Scholar 

  19. He F (2011) Bradford protein assay. Bio-protocol Bio101:e45. http://www.bio-protocol.org/e45

  20. Rexroth S, Mullineaux CW, Ellinger D, Sendtko E, Rögner M, Koenig F (2011) The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains. Plant Cell 23(6):2379–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Segami S, Makino S, Miyake A, Asaoka M, Maeshima M (2014) Dynamics of vacuoles and H+-pyrophosphatase visualized by monomeric green fluorescent protein in Arabidopsis: artifactual bulbs and native intravacuolar spherical structures. Plant Cell 26:3416–3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Rob Reid (University of Adelaide, Adelaide, Australia) for his kind discussion and correction of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuro Mimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ohnishi, M., Yoshida, K., Mimura, T. (2018). Analyzing the Vacuolar Membrane (Tonoplast) Proteome. In: Mock, HP., Matros, A., Witzel, K. (eds) Plant Membrane Proteomics. Methods in Molecular Biology, vol 1696. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7411-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7411-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7409-2

  • Online ISBN: 978-1-4939-7411-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics