Skip to main content

Ultrahigh-Throughput Screening of Single-Cell Lysates for Directed Evolution and Functional Metagenomics

  • Protocol
  • First Online:
Protein Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1685))

Abstract

The success of ultrahigh-throughput screening experiments in directed evolution or functional metagenomics strongly depends on the availability of efficient technologies for the quantitative testing of a large number of variants. With advanced robotics, libraries of up to 105 clones can be screened per day as colonies on agar plates or cell lysates in microwell plates, albeit at high cost of capital, manpower and consumables. These cost considerations and the general need for high-throughput make miniaturization of assay volumes attractive. To provide a general solution to maintain genotype–phenotype linkage, biochemical assays have been compartmentalized into water-in-oil droplets. This chapter presents a microfluidic workflow that translates a frequently used screening procedure consisting of cytoplasmic/periplasmic protein expression and cell lysis to the single cell level in water-in-oil droplet compartments. These droplets are sorted based on reaction progress by fluorescence measurements at the picoliter scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Colin PY, Zinchenko A, Hollfelder F (2015) Enzyme engineering in biomimetic compartments. Curr Opin Struct Biol 33:42–51

    Article  CAS  PubMed  Google Scholar 

  2. Leemhuis H, Stein V, Griffiths AD et al (2005) New genotype-phenotype linkages for directed evolution of functional proteins. Curr Opin Struct Biol 15:472–478

    Article  CAS  PubMed  Google Scholar 

  3. Yang G, Withers SG (2009) Ultrahigh-throughput FACS-based screening for directed enzyme evolution. ChemBioChem 10:2704–2715

    Article  CAS  PubMed  Google Scholar 

  4. Schaerli Y, Wootton RC, Robinson T et al (2009) Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal Chem 81:302–306

    Article  CAS  PubMed  Google Scholar 

  5. van Vliet LD, Colin PY, Hollfelder F (2015) Bioinspired genotype-phenotype linkages: mimicking cellular compartmentalization for the engineering of functional proteins. Interface Focus 5:20150035

    Article  PubMed  PubMed Central  Google Scholar 

  6. Agresti JJ, Antipov E, Abate AR et al (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci U S A 107:4004–4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Theberge AB, Courtois F, Schaerli Y et al (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed 49:5846–5868

    Article  CAS  Google Scholar 

  8. Huebner A, Sharma S, Srisa-Art M et al (2008) Microdroplets: a sea of applications? Lab Chip 8:1244–1254

    Article  CAS  PubMed  Google Scholar 

  9. Mair P, Gielen F, Hollfelder F (2017) Exploring sequence space in search of functional enzymes using microfluidic droplets. Curr Opin Chem Biol 37:137–144. doi:10.1016/j.cbpa.2017.02.018

    Article  CAS  PubMed  Google Scholar 

  10. Kintses B, Hein C, Mohamed MF et al (2012) Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem Biol 19:1001–1009

    Article  CAS  PubMed  Google Scholar 

  11. Fischlechner M, Schaerli Y, Mohamed MF et al (2014) Evolution of enzyme catalysts caged in biomimetic gel-shell beads. Nat Chem 6:791–796

    Article  CAS  PubMed  Google Scholar 

  12. Zinchenko A, Devenish SRA, Kintses B et al (2014) One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal Chem 86:2526–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Courtois F, Olguin LF, Whyte G et al (2008) An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets. ChemBioChem 9:439–446

    Article  CAS  PubMed  Google Scholar 

  14. Houlihan G, Gatti-Lafranconi P, Kaltenbach M et al (2014) An experimental framework for improved selection of binding proteins using SNAP display. J Immunol Methods 405:47–56

    Article  CAS  PubMed  Google Scholar 

  15. Diamante L, Gatti-Lafranconi P, Schaerli Y et al (2013) In vitro affinity screening of protein and peptide binders by megavalent bead surface display. Protein Eng Des Sel 26:713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mankowska SA, Gatti-Lafranconi P, Chodorge M et al (2016) A shorter route to antibody binders via quantitative in vitro bead-display screening and consensus analysis. Sci Rep 6:36391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kintses B, van Vliet LD, Devenish SRA et al (2010) Microfluidic droplets: new integrated workflows for biological experiments. Curr OpinChem Biol 14:548–555

    Article  CAS  Google Scholar 

  18. Colin PY, Kintses B, Gielen F et al (2015) Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat Commun 6:10008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kotz K, Cheng X, Toner M (2007) PDMS device fabrication and surface modification. J Vis Exp 8:319

    Google Scholar 

  20. Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS-PDMS bonding technique for microfluidic devices. J Micromech Microeng 18:067001

    Article  Google Scholar 

  21. McDonald JC, Duffy DC, Anderson JR et al (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40

    Article  CAS  PubMed  Google Scholar 

  22. Kaltenbach M, Devenish SR, Hollfelder F (2012) A simple method to evaluate the biochemical compatibility of oil/surfactant mixtures for experiments in microdroplets. Lab Chip 12:4185–4192

    Article  CAS  PubMed  Google Scholar 

  23. Courtois F, Olguin LF, Whyte G et al (2009) Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays. Anal Chem 81:3008–3016

    Article  CAS  PubMed  Google Scholar 

  24. Zinchenko A, Devenish SR, Hollfelder F (2017) Rapid quantitative assessment of leakage of assay components from microdroplet to test the suitability of oil/surfactant combinations. Submitted

    Google Scholar 

  25. Woronoff G, El Harrak A, Mayot E et al (2011) New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications. Anal Chem 83:2852–2857

    Article  CAS  PubMed  Google Scholar 

  26. Gielen F, Hours R, Emond S et al (2016) Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS). Proc Natl Acad Sci U S A 113:E7383–E7389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beneyton T, Coldren F, Baret JC et al (2014) CotA laccase: high-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics. Analyst 139:3314–3323

    Article  CAS  PubMed  Google Scholar 

  28. Sciambi A, Abate AR (2015) Accurate microfluidic sorting of droplets at 30 kHz. Lab Chip 15:47–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Hollfelder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gielen, F., Colin, PY., Mair, P., Hollfelder, F. (2018). Ultrahigh-Throughput Screening of Single-Cell Lysates for Directed Evolution and Functional Metagenomics. In: Bornscheuer, U., Höhne, M. (eds) Protein Engineering. Methods in Molecular Biology, vol 1685. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7366-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7366-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7364-4

  • Online ISBN: 978-1-4939-7366-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics