Skip to main content

Essential Steps in Characterizing Bacteriophages: Biology, Taxonomy, and Genome Analysis

  • Protocol
  • First Online:
Bacteriophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1681))

Abstract

Because of the rise in antimicrobial resistance there has been a significant increase in interest in phages for therapeutic use. Furthermore, the cost of sequencing phage genomes has decreased to the point where it is being used as a teaching tool for genomics. Unfortunately, the quality of the descriptions of the phage and its annotation frequently are substandard. The following chapter is designed to help people working on phages, particularly those new to the field, to accurately describe their newly isolated viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Leplae R, Hebrant A, Wodak SJ, Toussaint A (2004) ACLAME: a CLAssification of Mobile genetic Elements. Nucleic Acids Res 32:D45–D49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McNair K, Bailey BA, Edwards RA (2012) PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28:614–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abedon ST, Ackermann H-W (2001) Bacteriophage names 2000. The Bacteriophage Ecology Group (BEG). http://www.phage.org/names.htm

  4. Kropinski AM, Prangishvili D, Lavigne R (2009) Position paper: the creation of a rational scheme for the nomenclature of viruses of Bacteria and Archaea. Environ Microbiol 11:2775–2777

    Article  PubMed  Google Scholar 

  5. Roberts RJ, Vincze T, Posfai J, Macelis D (2003) REBASE: restriction enzymes and methyltransferases. Nucleic Acids Res 31:418–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ackermann HW, Prangishvili D (2012) Prokaryote viruses studied by electron microscopy. Arch Virol 157:1843–1849

    Article  CAS  PubMed  Google Scholar 

  7. Ackermann H-W (2014) Sad state of phage electron microscopy. Please shoot the messenger. Microorganisms 2:1–10

    Article  Google Scholar 

  8. Ackermann HW, Tiekotter KL (2012) Murphy's law-if anything can go wrong, it will: Problems in phage electron microscopy. Bacteriophage 2:122–129

    Article  PubMed  PubMed Central  Google Scholar 

  9. Casjens SR, Gilcrease EB (2009) Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol 502:91–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li SS, Fan H, An XP, Fan HH, Jiang HH, Mi ZQ, Tong YG (2013) Utility of high throughput sequencing technology in analyzing the terminal sequence of caudovirales bacteriophage genome. Bing Du Xue Bao 29:39–43

    PubMed  Google Scholar 

  11. Lingohr E, Frost S, Johnson RP (2009) Determination of bacteriophage genome size by pulsed-field gel electrophoresis. Methods Mol Biol 502:19–25

    Article  CAS  PubMed  Google Scholar 

  12. Tamakoshi M, Murakami A, Sugisawa M, Tsuneizumi K, Takeda S, Saheki T, Izumi T, Akiba T, Mitsuoka K, Toh H, Yamashita A, Arisaka F, Hattori M, Oshima T, Yamagishi A (2011) Genomic and proteomic characterization of the large Myoviridae bacteriophage ϕTMA of the extreme thermophile Thermus thermophilus. Bacteriophage 1:152–164

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sharp R, Jansons IS, Gertman E, Kropinski AM (1996) Genetic and sequence analysis of the cos region of the temperate Pseudomonas aeruginosa bacteriophage, D3. Gene 177:47–53

    Article  CAS  PubMed  Google Scholar 

  14. Juhala RJ, Ford ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW (2000) Genetic sequences of bacteriophages HK97 and HK022: Pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 299:27–51

    Article  CAS  PubMed  Google Scholar 

  15. Ceyssens PJ, Lavigne R, Mattheus W, Chibeu A, Hertveldt K, Mast J, Robben J, Volckaert G (2006) Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the ϕKMV subgroup within the T7 supergroup. J Bacteriol 188:6924–6931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Glukhov AS, Krutilina AI, Shlyapnikov MG, Severinov K, Lavysh D, Kochetkov VV, McGrath JW, de LC SOV, Krylov VN, Akulenko NV, Kulakov LA (2012) Genomic analysis of Pseudomonas putida phage tf with localized single-strand DNA interruptions. PLoS One 7:e51163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Darling AE, Mau B (2010) Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J (2005) ACT: the Artemis comparison tool. Bioinformatics 21:3422–3423

    Article  CAS  PubMed  Google Scholar 

  19. Becker EA, Burns CM, Leon EJ, Rajabojan S, Friedman R, Friedrich TC, O'Connor SL, Hughes AL (2012) Experimental analysis of sources of error in evolutionary studies based on Roche/454 pyrosequencing of viral genomes. Genome Biol Evol 4:457–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Basrai MA, Hieter P, Boeke JD (1997) Small open reading frames: beautiful needles in the haystack. Genome Res 7:768–771

    Article  CAS  PubMed  Google Scholar 

  22. Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann HW, Ahmed R, Mazzocco A, Yates J, Lingohr EJ, Johnson RP (2013) The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. Virol J 10:76

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carver T, Berriman M, Tivey A, Patel C, Bohme U, Barrell BG, Parkhill J, Rajandream MA (2008) Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24:2672–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kropinski AM, Borodovsky M, Carver TJ, Cerdeno-Tarraga AM, Darling A, Lomsadze A, Mahadevan P, Stothard P, Seto D, Van DG, Wishart DS (2009) In silico identification of genes in bacteriophage DNA. Methods Mol Biol 502:57–89

    Article  CAS  PubMed  Google Scholar 

  27. Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167

    Article  CAS  PubMed  Google Scholar 

  28. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA III, Stevens R, Vonstein V, Wattam AR, Xia F (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365

    Article  PubMed  PubMed Central  Google Scholar 

  30. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Stevens RL, Vonstein V, Xia F (2012) SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 7:e48053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article  CAS  PubMed  Google Scholar 

  32. Van Domselaar GH, Stothard P, Shrivastava S, Cruz JA, Guo A, Dong X, Lu P, Szafron D, Greiner R, Wishart DS (2005) BASys: a web server for automated bacterial genome annotation. Nucleic Acids Res 33:W455–W459

    Article  PubMed  PubMed Central  Google Scholar 

  33. Galens K, Orvis J, Daugherty S, Creasy HH, Angiuoli S, White O, Wortman J, Mahurkar A, Giglio MG (2011) The IGS standard operating procedure for automated prokaryotic annotation. Stand Genomic Sci 4:244–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Campbell MS, Holt C, Moore B, Yandell M (2014) Genome annotation and curation using MAKER and MAKER-P. Curr Protoc Bioinformatics 48:4.11.1–4.11.39. doi:10.1002/0471250953.bi0411s48.:4

    Article  Google Scholar 

  35. Pearson WR (2013) An introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinformatics, Chapter 3:Unit3.1.:Unit3

    Google Scholar 

  36. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  CAS  PubMed  Google Scholar 

  37. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  CAS  PubMed  Google Scholar 

  39. Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  PubMed  PubMed Central  Google Scholar 

  40. Holbrook R, Anderson JM, Baird-Parker AC (1969) The performance of a stable version of Baird-Parker’s medium for isolating Staphylococcus aureus. J Appl Bacteriol 32:187–192

    Article  CAS  PubMed  Google Scholar 

  41. Calderon IL, Arenas FA, Perez JM, Fuentes DE, Araya MA, Saavedra CP, Tantalean JC, Pichuantes SE, Youderian PA, Vasquez CC (2006) Catalases are NAD(P)H-dependent tellurite reductases. PLoS One 1:e70

    Article  PubMed  PubMed Central  Google Scholar 

  42. Walter EG, Thomas CM, Ibbotson JP, Taylor DE (1991) Transcriptional analysis, translational analysis, and sequence of the kilA-tellurite resistance region of plasmid RK2Ter. J Bacteriol 173:1111–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Whelan KF, Colleran E, Taylor DE (1995) Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478. J Bacteriol 177:5016–5027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. O'Gara JP, Gomelsky M, Kaplan S (1997) Identification and molecular genetic analysis of multiple loci contributing to high-level tellurite resistance in Rhodobacter sphaeroides 2.4.1. Appl Environ Microbiol 63:4713–4720

    PubMed  PubMed Central  Google Scholar 

  45. Fischer D, Eisenberg D (1999) Finding families for genomic ORFans. Bioinformatics 15:759–762

    Article  CAS  PubMed  Google Scholar 

  46. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. AAAI Press, Menlo Park, CA, pp 28–36

    Google Scholar 

  47. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lavigne R, Sun WD, Volckaert G (2004) PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. Bioinformatics 20:629–6135

    Article  CAS  PubMed  Google Scholar 

  49. Lavigne R, Villegas A, Kropinski AM (2009) In silico characterization of DNA motifs with particular reference to promoters and terminators. Methods Mol Biol 502:113–129. doi:10.1007/978-1-60327-565-1_8

    Article  CAS  PubMed  Google Scholar 

  50. Jeng ST, Lay SH, Lai HM (1997) Transcription termination by bacteriophage T3 and SP6 RNA polymerases at Rho-independent terminators. Can J Microbiol 43:1147–1156

    Article  CAS  PubMed  Google Scholar 

  51. Mitra A, Kesarwani AK, Pal D, Nagaraja V (2011) WebGeSTer DB--a transcription terminator database. Nucleic Acids Res 39:D129–D135

    Article  CAS  PubMed  Google Scholar 

  52. Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D (2011) ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol 8:11–13

    Article  CAS  PubMed  Google Scholar 

  53. Solovyev V, Salamov A (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW (ed) Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers, Hauppauge, NY, pp 61–78

    Google Scholar 

  54. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rice P, Longden I, Bleasby A, Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  56. Figueras MJ, Beaz-Hidalgo R, Hossain MJ, Liles MR (2014) Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc 2:e00927–e00914

    Article  PubMed  PubMed Central  Google Scholar 

  57. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  CAS  PubMed  Google Scholar 

  58. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

    Article  CAS  PubMed  Google Scholar 

  59. Konstantinidis KT, Ramette A, Tiedje JM (2006) Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl Environ Microbiol 72:7286–7293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013) Microbial genomic taxonomy. BMC Genomics 14:913. doi:10.1186/1471-2164-14-913.:913-914

    Article  PubMed  PubMed Central  Google Scholar 

  62. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. doi:10.1186/1471-2164-12-402.:402-412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21:537–539

    Article  CAS  PubMed  Google Scholar 

  65. Abbott JC, Aanensen DM, Rutherford K, Butcher S, Spratt BG (2005) WebACT--an online companion for the Artemis Comparison Tool. Bioinformatics 21:3665–3666

    Article  CAS  PubMed  Google Scholar 

  66. Lavigne R, Seto D, Mahadevan P, Ackermann H-W, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159:406–414

    Article  CAS  PubMed  Google Scholar 

  67. Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann H-W, Kropinski AM (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kovalyova IV, Kropinski AM (2003) The complete genomic sequence of lytic bacteriophage gh-1 infecting Pseudomonas putida-evidence for close relationship to the T7 group. Virology 311:305–315

    Article  CAS  PubMed  Google Scholar 

  69. Kropinski AM, Lingohr EJ, Moyles DM, Ojha S, Mazzocco A, She YM, Bach SJ, Rozema EA, Stanford K, McAllister TA, Johnson RP (2012) Endemic bacteriophages: a cautionary tale for evaluation of bacteriophage therapy and other interventions for infection control in animals. J Virol 9:207

    Article  Google Scholar 

  70. Zhao Y, Wang K, Jiao N, Chen F (2009) Genome sequences of two novel phages infecting marine roseobacters. Environ Microbiol 11:2055–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hatfull GF (2012) The secret lives of mycobacteriophages. Adv Virus Res 82:179–288

    Article  CAS  PubMed  Google Scholar 

  72. Hatfull GF (2012) Complete genome sequences of 138 mycobacteriophages. J Virol 86:2382–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hatfull GF (2014) Molecular genetics of Mycobacteriophages. Microbiol Spect 2:1–36

    Article  Google Scholar 

  74. Grose JH, Casjens SR (2014) Understanding the enormous diversity of bacteriophages: The tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468-470:421–443

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramy Karam Aziz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aziz, R.K., Ackermann, HW., Petty, N.K., Kropinski, A.M. (2018). Essential Steps in Characterizing Bacteriophages: Biology, Taxonomy, and Genome Analysis. In: Clokie, M., Kropinski, A., Lavigne, R. (eds) Bacteriophages. Methods in Molecular Biology, vol 1681. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7343-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7343-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7341-5

  • Online ISBN: 978-1-4939-7343-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics