Skip to main content

Gateway to Understanding Argonaute Loading of Single-Stranded RNAs: Preparation of Deep Sequencing Libraries with In Vitro Loading Samples

  • Protocol
  • First Online:
Argonaute Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1680))

Abstract

Identification of sequences preferred by individual RNA-binding proteins (RBPs) has been accelerated by recent advances in the quantitative analysis of protein–RNA interactions on a massive scale, and such experiments have even revealed hidden sequence specificity of RBPs that were assumed to be non-specific. Argonaute (AGO) proteins bind diverse guide small RNAs and were believed to have no sequence specificity besides the preference for particular bases at the 5′ nucleotide. However, we recently showed that short single-stranded RNAs (ssRNAs) are loaded to AGOs in vivo and in cell extracts with detectable sequence preferences. To study the sequence specificity, we established a protocol for preparing the oligo-specific deep-sequencing library. The protocol includes in vitro loading assay that uses RNA oligos containing randomized nucleotides at the first five positions and also splinted-ligation that specifically amplifies the introduced oligo RNA species from a complex mixture of endogenous small RNAs and exogenously introduced RNA oligos. With the current sequencing depth, this procedure will allow quantitative profiling of interactions between the AGO and ~1000 ssRNA species with different sequences. The method would aid in studying the mechanism behind the selective loading of ssRNAs to AGOs and may potentially be applied to study interactions between RNA and other RNA-binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14(7):447–459. doi:10.1038/nrg3462

    Article  CAS  PubMed  Google Scholar 

  2. Kobayashi H, Tomari Y (2016) RISC assembly: coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta 1859(1):71–81. doi:10.1016/j.bbagrm.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  3. Suzuki HI, Katsura A, Yasuda T, Ueno T, Mano H, Sugimoto K, Miyazono K (2015) Small-RNA asymmetry is directly driven by mammalian Argonautes. Nat Struct Mol Biol 22(7):512–521. doi:10.1038/nsmb.3050

    Article  CAS  PubMed  Google Scholar 

  4. Chak LL, Okamura K (2014) Argonaute-dependent small RNAs derived from single-stranded, non-structured precursors. Front Genet 5:172. doi:10.3389/fgene.2014.00172

    Article  PubMed  PubMed Central  Google Scholar 

  5. Okamura K, Ladewig E, Zhou L, Lai EC (2013) Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals. Genes Dev 27(7):778–792. doi:10.1101/gad.211698.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Winter J, Link S, Witzigmann D, Hildenbrand C, Previti C, Diederichs S (2013) Loop-miRs: active microRNAs generated from single-stranded loop regions. Nucleic Acids Res 41(10):5503–5512. doi:10.1093/nar/gkt251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lima WF, Prakash TP, Murray HM, Kinberger GA, Li W, Chappell AE, Li CS, Murray SF, Gaus H, Seth PP, Swayze EE, Crooke ST (2012) Single-stranded siRNAs activate RNAi in animals. Cell 150(5):883–894. doi:10.1016/j.cell.2012.08.014

    Article  CAS  PubMed  Google Scholar 

  8. Chorn G, Klein-McDowell M, Zhao L, Saunders MA, Flanagan WM, Willingham AT, Lim LP (2012) Single-stranded microRNA mimics. RNA 18(10):1796–1804. doi:10.1261/rna.031278.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu J, Yu D, Aiba Y, Pendergraff H, Swayze EE, Lima WF, Hu J, Prakash TP, Corey DR (2013) ss-siRNAs allele selectively inhibit ataxin-3 expression: multiple mechanisms for an alternative gene silencing strategy. Nucleic Acids Res 41(20):9570–9583. doi:10.1093/nar/gkt693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu J, Liu J, Narayanannair KJ, Lackey JG, Kuchimanchi S, Rajeev KG, Manoharan M, Swayze EE, Lima WF, Prakash TP, Xiang Q, Martinez C, Corey DR (2014) Allele-selective inhibition of mutant atrophin-1 expression by duplex and single-stranded RNAs. Biochemistry 53(28):4510–4518. doi:10.1021/bi500610r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsui M, Corey DR (2016) Non-coding RNAs as drug targets. Nat Rev Drug Discov. doi:10.1038/nrd.2016.117

  12. Okamura K, Liu N, Lai EC (2009) Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol Cell 36(3):431–444. doi: S1097-2765(09)00687-X [pii] 10.1016/j.molcel.2009.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, Perrimon N, Kellis M, Wohlschlegel J, Sachidanandam R, Hannon G, Brennecke J (2008) An endogenous siRNA pathway in Drosophila. Nature 453:798–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Z, Lee JE, Riemondy K, Anderson EM, Yi R (2013) High-efficiency RNA cloning enables accurate quantification of miRNA expression by deep sequencing. Genome Biol 14(10):R109. doi:10.1186/gb-2013-14-10-r109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maroney PA, Chamnongpol S, Souret F, Nilsen TW (2008) Direct detection of small RNAs using splinted ligation. Nat Protoc 3(2):279–287. doi:10.1038/nprot.2007.530

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gregory Hannon for sharing the tagged AGO2 plasmid. Research in K.O.’s group was supported by the National Research Foundation, Prime Minister’s Office, Singapore under its NRF Fellowship Programme (NRF2011NRF-NRFF001-042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsutomo Okamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Goh, E., Okamura, K. (2018). Gateway to Understanding Argonaute Loading of Single-Stranded RNAs: Preparation of Deep Sequencing Libraries with In Vitro Loading Samples. In: Okamura, K., Nakanishi, K. (eds) Argonaute Proteins. Methods in Molecular Biology, vol 1680. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7339-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7339-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7338-5

  • Online ISBN: 978-1-4939-7339-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics