Advertisement

Assessing miR-451 Activity and Its Role in Erythropoiesis

  • Dmitry A. Kretov
  • Andrew M. Shafik
  • Daniel CifuentesEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1680)

Abstract

The ability to microinject small RNAs and mRNAs into zebrafish embryos, of different genetic backgrounds, allows for the precise dissection of microRNA processing pathways at the molecular level, while simultaneously provides insight into their physiologic role. Here, we apply such an approach to determine the impact of Argonaute 2 in the processing of miR-451, a vertebrate-specific microRNA required for terminal erythrocyte differentiation. This was achieved using fluorescent microRNA reporter sensor assays and phenotype rescue experiments.

Key words

Zebrafish MicroRNA Ago2 Microinjection miR-451 Erythrocyte 

Notes

Acknowledgment

This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development-NIH grant R00HD071968.

References

  1. 1.
    Pattanayak, V., Guilinger, J. P. & Liu, D. R. Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol 546, 47–78, doi: 10.1016/B978-0-12-801185-0.00003-9 (2014).
  2. 2.
    Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn 203, 253–310, doi:10.1002/aja.1002030302 (1995).Google Scholar
  3. 3.
    Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34CrossRefPubMedGoogle Scholar
  4. 4.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854CrossRefPubMedGoogle Scholar
  5. 5.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366CrossRefPubMedGoogle Scholar
  6. 6.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419CrossRefPubMedGoogle Scholar
  7. 7.
    Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235. doi: 10.1038/nature03049 CrossRefPubMedGoogle Scholar
  8. 8.
    Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240. doi: 10.1038/nature03120 CrossRefPubMedGoogle Scholar
  9. 9.
    Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson ND, Wolfe SA, Giraldez AJ (2010) A novel miRNA processing pathway independent of dicer requires Argonaute2 catalytic activity. Science 328(5986):1694–1698CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yoda M, Cifuentes D, Izumi N, Sakaguchi Y, Suzuki T, Giraldez AJ, Tomari Y (2013) Poly(A)-specific ribonuclease mediates 3′-end trimming of Argonaute2-cleaved precursor microRNAs. Cell Rep 5(3):715–726. doi: 10.1016/j.celrep.2013.09.029 CrossRefPubMedGoogle Scholar
  11. 11.
    Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308 (5723):833–838Google Scholar
  12. 12.
    Rasmussen KD, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, Bilbao-Cortes D, Horos R, Von Lindern M, Enright AJ, O’Carroll D The miR-144/451 locus is required for erythroid homeostasis. The Journal of experimental medicine 207 (7):1351–1358Google Scholar
  13. 13.
    Pase L, Layton JE, Kloosterman WP, Carradice D, Waterhouse PM, Lieschke GJ (2009) miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood 113 (8):1794–1804Google Scholar
  14. 14.
    Dore LC, Amigo JD, Dos Santos CO, Zhang Z, Gai X, Tobias JW, Yu D, Klein AM, Dorman C, Wu W, Hardison RC, Paw BH, Weiss MJ (2008) A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci U S A 105 (9):3333–3338Google Scholar
  15. 15.
    Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465 (7298):584–589Google Scholar
  16. 16.
    Yang JS, Maurin T, Robine N, Rasmussen KD, Jeffrey KL, Chandwani R, Papapetrou EP, Sadelain M, O’Carroll D, Lai EC Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci USA 107 (34):15163-15168Google Scholar
  17. 17.
    Horstick EJ, Jordan DC, Bergeron SA, Tabor KM, Serpe M, Feldman B, Burgess HA (2015) Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish. Nucleic Acids Res 43(7):e48. doi: 10.1093/nar/gkv035 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. doi: 10.1038/nmeth.1318 CrossRefPubMedGoogle Scholar
  19. 19.
    Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90. doi: 10.1038/nbt0102-87 CrossRefPubMedGoogle Scholar
  20. 20.
    Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5(6):545–551. doi: 10.1038/nmeth.1209 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Iuchi I, Yamamoto M (1983) Erythropoiesis in the developing rainbow trout, Salmo gairdneri irideus: histochemical and immunochemical detection of erythropoietic organs. J Exp Zool 226(3):409–417. doi: 10.1002/jez.1402260311
  22. 22.
    Detrich HW 3rd, Kieran MW, Chan FY, Barone LM, Yee K, Rundstadler JA, Pratt S, Ransom D, Zon LI (1995) Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci USA 92(23):10713–10717Google Scholar
  23. 23.
    Karlsson J, von Hofsten J, Olsson PE (2001) Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol (NY) 3(6):522–527. doi: 10.1007/s1012601-0053-4 CrossRefGoogle Scholar
  24. 24.
    Yu D, dos Santos CO, Zhao G, Jiang J, Amigo JD, Khandros E, Dore LC, Yao Y, D'Souza J, Zhang Z, Ghaffari S, Choi J, Friend S, Tong W, Orange JS, Paw BH, Weiss MJ (2010) miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev 24(15):1620–1633CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Dmitry A. Kretov
    • 1
  • Andrew M. Shafik
    • 1
  • Daniel Cifuentes
    • 1
    Email author
  1. 1.Department of BiochemistryBoston University School of MedicineBostonUSA

Personalised recommendations