Skip to main content

What Will Be the Benefits of Biotech Wheat for European Agriculture?

  • Protocol
  • First Online:
Wheat Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1679))

Abstract

In European countries, wheat occupies the largest crop area with high yielding production. France, a major producer and exporter in Europe, ranks the fifth producer worldwide. Biotic stresses are European farmers’ major challenges (fungal and viral diseases, and insect pests) followed by abiotic ones such as drought and grain protein composition. During the last 40 years, 1136 scientific articles on biotech wheat were published by USA followed by China, Australia, Canada, and European Union with the UK. European research focuses on pests and diseases resistances using widely marker-assisted selection (MAS). Transgenesis is used in basic research to develop resistance against some fungi (Fusarium head blight) while RNA interference (RNAi) silencing is used against some fungi and virus. Transgenic plants were also transformed with genes from various species for drought tolerance. The UK (mostly with transgenesis and site-specific nucleases) and France (with no transgenic tools but with MAS and site-specific nucleases) are the main countries carrying out research programs for both biotic stress and drought tolerance. Thus, few European countries used transgenesis for gluten protein composition and RNAi-mediated silencing in celiac disease. Because of vandalism field trials of transgenics dropped since 2000. No transgenic wheat is cultivated in Europe for political reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):e66428. doi:10.1371/journal.pone.0066428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. http://faostat3.fao.org/home/index.html

  3. Usine nouvelle. octobre 2015. No. 3442

    Google Scholar 

  4. Rajaram S (2001) Prospects and promise of wheat breeding in the 21(st) century. In: Wheat in a global environment, vol 9. Springer, Netherlands, pp 37–52

    Chapter  Google Scholar 

  5. http://www.statista.com/statistics/237705/global-wheat-production/

  6. http://www.wheatinitiative.org

  7. Ricroch A, Harwood W, Svobodová Z, Sági L, Hundleby P, Badea EM, Rosca I, Cruz G, Salema Fevereiro MP, Marfà Riera V, Jansson S, Morandini P, Bojinov B, Cetiner S, Custers R, Schrader U, Jacobsen H-J, Martin-Laffon J, Boisron A, Kuntz M (2015) Challenges facing European agriculture and possible biotechnological solutions. Crit Rev Biotechnol 36(5):875–883. doi:10.3109/07388551.2015.1055707. 1–9 (early online: 1st July 2015). http://informahealthcare.com/doi/abs/

    PubMed  Google Scholar 

  8. Bruce TJ, Aradottir GI, Smart LE, Martin JL, Caulfield JC, Doherty A, Sparks CA, Woodcock CM, Birkett MA, Napier JA, Jones HD, Pickett JA (2015) The first crop plant genetically engineered to release an insect pheromone for defence. Sci Rep 5:11183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhalla PL, Ottenhof HH, Singh MB (2006) Wheat transformation–an update of recent progress. Euphytica 149(3):353–366

    Article  Google Scholar 

  10. Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61(12):3211–3222

    Article  CAS  PubMed  Google Scholar 

  11. Zaïdi I, Ebel C, Touzri M, Herzog E, Evrard JL, Schmit AC, Masmoudi K, Hanin M (2010) TMKP1 is a novel wheat stress responsive MAP kinase phosphatase localized in the nucleus. Plant Mol Biol 73(3):325–338

    Article  PubMed  Google Scholar 

  12. Iqbal S, Bano A (2010) Effect of drought and abscisic acid application on the osmotic adjustment of four wheat cultivars. J Chem Soc Pak 32(1):13–19

    CAS  Google Scholar 

  13. Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Correa Molinari HB, Marur CJ, Esteves Vieira LG (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164(10):1367–1376

    Article  CAS  PubMed  Google Scholar 

  14. Chauhan H, Khurana P (2011) Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J 9(3):408–417

    Article  CAS  PubMed  Google Scholar 

  15. Miller HI, Carter AC (2010) Genetically engineered wheat, redux. Trends Biotechnol 28(1):1–2

    Article  CAS  PubMed  Google Scholar 

  16. Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28(2):301–311

    Article  CAS  PubMed  Google Scholar 

  17. Ben-Saad R, Ben-Ramdhan W, Zouari N, Azaza J, Mieulet D, Guiderdoni E, Ellouz R, Hassairi A (2012) Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Mol Breed 30(1):521–533

    Article  CAS  Google Scholar 

  18. http://www.trigall.com/?lang=en

  19. Zhao D, Derkx AP, Liu DC, Buchner P, Hawkesford MJ (2015) Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biol 17(4):904–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ribeiro M, Nunes-Miranda JD, Branlard G, Carrillo JM, Rodriguez-Quijano M, Igrejas G (2013) One hundred years of grain omics: identifying the glutens that feed the world. J Proteome Res 12:4702–4716

    Article  CAS  PubMed  Google Scholar 

  21. Piston F, Gil-Humanes J, Barro F (2013) Integration of promoters, inverted repeat sequences and proteomic data into a model for high silencing efficiency of coeliac disease related gliadins in bread wheat. BMC Plant Biol 13:136

    Article  PubMed  PubMed Central  Google Scholar 

  22. Altenbach SB, Tanaka CK, Pineau F, Lupi R, Drouet M, Beaudouin E, Morisset M, Denery-Papini S (2015) Assessment of the allergenic potential of transgenic wheat (Triticum aestivum) with reduced levels of omega 5-Gliadins, the major sensitizing allergen in wheat-dependent exercise-induced anaphylaxis. J Agric Food Chem 63(42):9323–9332

    Article  CAS  PubMed  Google Scholar 

  23. Barro F, Iehisa JC, Gimenez MJ, Garcia-Molina MD, Ozuna CV, Comino I, Sousa C, Gil-Humanes J (2015) Targeting of prolamins by RNAi in bread wheat: effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins. Plant Biotechnol J 14(3):986–996. doi:10.1111/pbi.12455. 2015 Aug 24

    Article  PubMed  Google Scholar 

  24. https://ecas.ec.europa.eu/cas/wayf?loginRequestId=ECAS_LR-15321105-8LWLXaFRYpJVcUVbeCxYCk9uJDecbqXzKiDroge9zQCOOHJuMOsaQfY8N3GQPMSSg3yFVQmfLpvzSm4Y0zcVKYa-Jj71zxYb8yrs0Zzxedqit1-L6A84OrBmq4s7hsbGwN6APlRLbWVsULyjbeh219mc0K&caller=%2Fcas%2Flogin#_ftn3

  25. Directive (EU) 2015/412 of the European Parliament and of the Council of 11 March 2015 amending Directive 2001/18/EC as regards the possibility for the Member States to restrict or prohibit the cultivation of genetically modified organisms (GMOs) in their territory

    Google Scholar 

  26. Proposal for a Regulation of the European Parliament and of the Council amending Regulation (EC) No 1829/2003 as regards the possibility for the Member States to restrict or prohibit the use of genetically modified food and feed on their territory. COM/2015/0177 final −2015/0093 (COD)

    Google Scholar 

  27. http://www.europarl.europa.eu/news/en/news-room/content/20150901IPR91167/html/Agriculture-committee-opposes-national-bans-on-Imports-of-GM-food-and-feed

  28. Ricroch A, Chopra S, Fleischer S (eds) (2014) Plant biotechnology-experience and future prospects. Springer, Switzerland, p 284

    Google Scholar 

  29. Meszaros K, Eva C, Kiss T, Banyai J, Kiss E, Teglas F, Lang L, Karsai I, Tamas L (2015) Generating marker-free transgenic wheat using minimal gene cassette and cold-inducible cre/lox system. Plant Mol Biol Report 33(5):1221–1231

    Article  CAS  Google Scholar 

  30. Marshall A (2014) Drought-tolerant varieties begin global march. Nat Biotechnol 32:308

    Article  CAS  Google Scholar 

  31. Kuntz M (2012) Destruction of public and governmental experiments of GMO in Europe. GM Crops Food 3:1–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès E. Ricroch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ricroch, A.E. (2017). What Will Be the Benefits of Biotech Wheat for European Agriculture?. In: Bhalla, P., Singh, M. (eds) Wheat Biotechnology. Methods in Molecular Biology, vol 1679. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7337-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7337-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7335-4

  • Online ISBN: 978-1-4939-7337-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics