Skip to main content

Endogenous Reference Genes and Their Quantitative Real-Time PCR Assays for Genetically Modified Bread Wheat (Triticum aestivum L.) Detection

  • Protocol
  • First Online:
Wheat Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1679))

Abstract

Endogenous reference genes (ERG) and their derivate analytical methods are standard requirements for analysis of genetically modified organisms (GMOs). Development and validation of suitable ERGs is the primary step for establishing assays that monitoring the genetically modified (GM) contents in food/feed samples. Herein, we give a review of the ERGs currently used for GM wheat analysis, such as ACC1, PKABA1, ALMT1, and Waxy-D1, as well as their performances in GM wheat analysis. Also, we discussed one model for developing and validating one ideal RG for one plant species based on our previous research work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed. (2003) Official Journal of the European Union 46:268

    Google Scholar 

  2. Notification 31 Ministry of Agriculture and Forestry of Korea, Seoul. (2000) Korea

    Google Scholar 

  3. Order 10, Ministry of Agriculture of the People’s Republic of China. (2002) China

    Google Scholar 

  4. Zhang D, Guo J (2011) The development and standardization of testing methods for genetically modified organisms and their derived products. J Integr Plant Biol 53:539–551

    Article  CAS  PubMed  Google Scholar 

  5. Papazova N, Zhang D, Gruden K, Vojvoda J, Yang L et al (2010) Evaluation of the reliability of maize reference assays for GMO quantification. Anal Bioanal Chem 396:2189–2201

    Article  CAS  PubMed  Google Scholar 

  6. Wang C, Jiang L, Rao J, Liu Y, Yang L (2010) Evaluation of four genes in rice for their suitability as endogenous reference standards in quantitative PCR. J Agric Food Chem 58:11543–11547

    Article  CAS  PubMed  Google Scholar 

  7. Hernández M, Río A, Esteve T, Prat S, Pla M (2001) A rapeseed-specific gene, acetyl-CoA carboxylase, can be used as a reference for qualitative and real-time quantitative PCR detection of transgenes from mixed food samples. J Agric Food Chem 49:3622–3627

    Article  PubMed  Google Scholar 

  8. Yang L, Pan A, Jia J, Ding J, Chen J, Cheng H, Zhang C, Zhang D (2005) Validation of a tomato-specific gene, LAT52, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic tomatoes. J Agric Food Chem 53:183–190

    Article  CAS  PubMed  Google Scholar 

  9. Yang L, Zhang H, Guo J, Pan L, Zhang D (2008) International collaborative study of the endogenous reference gene LAT52 used for qualitative and quantitative analyses of genetically modified tomato. J Agric Food Chem 56:3438–3443

    Article  CAS  PubMed  Google Scholar 

  10. Ding J, Jia J, Yang L, Wen H, Zhang C, Liu W, Zhang D (2004) Validation of a rice specific gene, sucrose phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. J Agric Food Chem 52:3372–3377

    Article  CAS  PubMed  Google Scholar 

  11. Jiang L, Yang L, Zhang H, Guo J, Mazzara M, Van den Eede G, Zhang D (2009) International collaborative study of the endogenous reference gene, sucrose phosphate synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice. J Agric Food Chem 57:3525–3532

    Article  CAS  PubMed  Google Scholar 

  12. Guo J, Yang L, Liu X, Zhang H, Qian B, Zhang D (2009) Applicability of the chymopapain gene used as endogenous reference gene for transgenic Huanong No.1 papaya detection. J Agric Food Chem 57:6502–6509

    Article  CAS  PubMed  Google Scholar 

  13. Wei J, Li F, Guo J, Li X, Xu J, Wu G, Zhang D, Yang L (2013) Collaborative ring trial of the papaya endogenous reference gene and its polymerase chain reaction assays for genetically modified organism analysis. J Agric Food Chem 61:11363–11370

    Article  CAS  PubMed  Google Scholar 

  14. Weng H, Pan A, Yang L, Zhang C, Liu Z, Zhang D (2004) Estimating transgene copy number by real-time PCR assay using HMG I/Y as an endogenous reference gene in transgenic rapeseed. Plant Mol Biol Rep 22:289–300

    Article  CAS  Google Scholar 

  15. Yang L, Chen JX, Huang C, Liu YH, Jia SR, Pan LW, Zhang DB (2005) Validation of a cotton-specific gene, Sad1, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic cottons. Plant Cell Rep 24:237–245

    Article  CAS  PubMed  Google Scholar 

  16. Hernández M, Esteve T, Pla M (2005) Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat. J Agric Food Chem 53:7003–7009

    Article  PubMed  Google Scholar 

  17. Chaouachi M, El Malki R, Berard A, Romaniuk M, Laval V, Brunel D, Bertheau Y (2008) Development of a real-time PCR method for the differential detection and quantification of four solanaceae in GMO analysis: potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum). J Agric Food Chem 56:1818–1828

    Article  CAS  PubMed  Google Scholar 

  18. Xia L, Ma Y, He Y, Jones HD (2012) GM wheat development in China: current status and challenges to commercialization. J Exp Bot 63:1785–1790

    Article  CAS  PubMed  Google Scholar 

  19. Bhalla PL (2006) Genetic engineering of wheat–current challenges and opportunities. Trends Biotechnol 24:305–311

    Article  CAS  PubMed  Google Scholar 

  20. Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147

    Article  CAS  Google Scholar 

  21. Obert C, Ridley WP, Schneider WR, Riordan GS, Nemeth AM et al (2004) The composition of grain and forage from glyphosate tolerant wheat MON7180 is equivalent to that of conventional wheat (Triticum aestivum L.) J Agric Food Chem 52:1375–1384

    Article  CAS  PubMed  Google Scholar 

  22. Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101–1111

    Article  CAS  PubMed  Google Scholar 

  23. Iida M, Yamashiro S, Yamakawa H, Hayakawa K, Kuribara H et al (2005) Development of taxon-specific sequences of common wheat for the detection of genetically modified wheat. J Agric Food Chem 53:6294–6300

    Article  CAS  PubMed  Google Scholar 

  24. Rønning SB, Berdal KG, Andersen CB, Holst-Jensen A (2006) Novel reference gene, PKABA1, used in a duplex real-time polymerase chain reaction for detection and quantitation of wheat-and barley-derived DNA. J Agric Food Chem 54:682–687

    Article  PubMed  Google Scholar 

  25. Vautrin S, Zhang D (2007) Real-time polymerase chain reaction assay for endogenous reference gene for specific detection and quantification of common wheat-derived DNA (Triticum aestivum L.) J AOAC Int 90:794–801

    CAS  PubMed  Google Scholar 

  26. Imai S, Tanaka K, Nishitsuji Y, Kikuchi Y, Matsuoka Y, Arami S, Sato M, Haraguchi H, Kurimoto Y, Mano J, Furui S, Kitta K (2012) An endogenous reference gene of common and durum wheat for detection of genetically modified wheat. Shokuhin Eiseigaku Zasshi 53:203–210

    Article  CAS  PubMed  Google Scholar 

  27. Broothaerts W, Corbisier P, Schimmel H, Trapmann S, Vincent S, Emons H (2008) A single nucleotide polymorphism (SNP839) in the adh1 reference gene affects the quantitation of genetically modified maize (Zea mays L.) J Agric Food Chem 56:8825–8831

    Article  CAS  PubMed  Google Scholar 

  28. Huang H, Cheng F, Wang R, Zhang D, Yang L (2013) Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection. PLoS One 8:e75850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bru D, Martin-Laurent F, Philippot L (2008) Quantification of the detrimental effect of a single primer-template mismatch by real-time PCR using the 16S rRNA gene as an example. Appl Environ Microbiol 74:1660–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klungthong C, Chinnawirotpisan P, Hussem K, Phonpakobsin T, Manasatienkij W et al (2010) The impact of primer and probe-template mismatches on the sensitivity of pandemic influenza A/H1N1/2009 virus detection by real-time RT-PCR. J Clin Virol 48:91–95

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dabing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yang, L., Quan, S., Zhang, D. (2017). Endogenous Reference Genes and Their Quantitative Real-Time PCR Assays for Genetically Modified Bread Wheat (Triticum aestivum L.) Detection. In: Bhalla, P., Singh, M. (eds) Wheat Biotechnology. Methods in Molecular Biology, vol 1679. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7337-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7337-8_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7335-4

  • Online ISBN: 978-1-4939-7337-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics