Skip to main content

Human Cells as Platform to Produce Gamma-Carboxylated Proteins

  • Protocol
  • First Online:
Recombinant Glycoprotein Production

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1674))

  • 3011 Accesses

Abstract

The gamma-carboxylated proteins belong to a family of proteins that depend on vitamin K for normal biosynthesis. The major representative gamma-carboxylated proteins are the coagulation system proteins, for example, factor VII, factor IX, factor X, prothrombin, and proteins C, S, and Z. These molecules have harbored posttranslational modifications, such as glycosylation and gamma-carboxylation, and for this reason they need to be produced in mammalian cell lines. Human cells lines have emerged as the most promising alternative to the production of gamma-carboxylated proteins. In this chapter, the methods to generate human cells as a platform to produce gamma-carboxylated proteins, for example the coagulation factors VII and IX, are presented. From the cell line modification up to the vitamin K adaptation of the produced cells is described in the protocols presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fliedl L, Grillari J, Grillari-Voglauer R (2015) Human cell lines for the production of recombinant proteins: on the horizon. New Biotechnol 32:673–679. doi:10.1016/j.nbt.2014.11.005

    Article  CAS  Google Scholar 

  2. Stenflo J, Fernlund P, Egan W, Roepstorff P (1974) Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci U S A 71:2730–2733. doi:10.1073/pnas.71.7.2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stenflo J (1999) Contributions of Gla and EGF-like domains to the function of vitamin K-dependent coagulation factors. Crit Rev Eukaryot Gene Expr 9:59–88

    CAS  PubMed  Google Scholar 

  4. Wallin R, Hutson SM (2004) Warfarin and the vitamin K-dependent γ-carboxylation system. Trends Mol Med 10:299–302. doi:10.1016/j.molmed.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  5. Dahlbäck B, Villoutreix BO (2003) Molecular recognition in the protein C anticoagulant pathway. J Thromb Haemost 1:1525–1534

    Article  PubMed  Google Scholar 

  6. Aktimur A, Gabriel MA, Gailani D, Toomey JR (2003) The factor IX gamma-carboxyglutamic acid (Gla) domain is involved in interactions between factor IX and factor XIa. J Biol Chem 278:7981–7987. doi:10.1074/jbc.M212748200

    Article  CAS  PubMed  Google Scholar 

  7. Broze GJ (2001) Protein Z-dependent regulation of coagulation. Thromb Haemost 86:8–13

    CAS  PubMed  Google Scholar 

  8. Melaragno MG, Fridell YW, Berk BC (1999) The Gas6/Axl system: a novel regulator of vascular cell function. Trends Cardiovasc Med 9:250–253

    Article  CAS  PubMed  Google Scholar 

  9. Hoang QQ, Sicheri F, Howard AJ, Yang DSC (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425:977–980. doi:10.1038/nature02079

    Article  CAS  PubMed  Google Scholar 

  10. Luo G, Ducy P, McKee MD et al (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81. doi:10.1038/386078a0

    Article  CAS  PubMed  Google Scholar 

  11. HANSSON K, STENFLO J (2005) Post-translational modifications in proteins involved in blood coagulation. J Thromb Haemost 3:2633–2648. doi:10.1111/j.1538-7836.2005.01478.x

    Article  CAS  PubMed  Google Scholar 

  12. Wallin R (2001) A molecular mechanism for genetic warfarin resistance in the rat. FASEB J 15:2542–2544. doi:10.1096/fj.01-0337fje

    CAS  PubMed  Google Scholar 

  13. Furie B, Bouchard BA, Furie BC (1999) Vitamin K-dependent biosynthesis of γ-carboxyglutamic acid. Blood 93:1798–1808

    CAS  PubMed  Google Scholar 

  14. Cain D, Hutson SM, Wallin R (1998) Warfarin resistance is associated with a protein component of vitamin K 2, 3-epoxide reductase enzyme complex in rat liver. Thromb Haemost 80:128–133

    CAS  PubMed  Google Scholar 

  15. Vatandoost J, Pakdaman SF (2016) The effects of influencing factors on γ-carboxylation and expression of recombinant vitamin K dependent coagulation factors. J Biomed. doi:10.17795/jmb-6077

  16. Xiao W, Li CQ, Xiao XP, Lin FZ (2013) Expression and fast preparation of biologically active recombinant human coagulation factor VII in CHO-K1 cells. Genet Mol Res 12:6813–6824. doi:10.4238/2013.December.16.7

    Article  CAS  PubMed  Google Scholar 

  17. do Amaral RLF, de Sousa Bomfim A, de Abreu-Neto MS et al (2016) Approaches for recombinant human factor IX production in serum-free suspension cultures. Biotechnol Lett 38:385–394. doi:10.1007/s10529-015-1991-1

    Article  PubMed  Google Scholar 

  18. Dadehbeigi N, Ostad SN, Faramarzi MA, Ghahremani MH (2008) Sex hormones affect the production of recombinant factor IX in CHO and HEK-293 cell lines. Biotechnol Lett 30:1909–1912. doi:10.1007/s10529-008-9774-6

    Article  CAS  PubMed  Google Scholar 

  19. de Sousa Bomfim A, Cristina Corrêa de Freitas M, Picanço-Castro V et al (2016) Human cell lines: a promising alternative for recombinant FIX production. Protein Expr Purif 121:149–156. doi:10.1016/j.pep.2015.11.023

    Article  PubMed  Google Scholar 

  20. Berkner KL (1993) Expression of recombinant vitamin K-dependent proteins in mammalian cells: factors IX and VII. Methods Enzymol 222:450–477

    Article  CAS  PubMed  Google Scholar 

  21. Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170. doi:10.1016/j.biotechadv.2011.08.022

    Article  CAS  PubMed  Google Scholar 

  22. Rose T, Winkler K, Brundke E et al (2008) Alternative strategies and new cell lines for high-level production of biopharmaceuticals. In: Knäblein J (ed) Modern biopharmaceuticals: design, development and optimization. Wiley, Weinheim, pp 761–777

    Google Scholar 

  23. Swiech K, Picanço-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84:147–153. doi:10.1016/j.pep.2012.04.023

    Article  CAS  PubMed  Google Scholar 

  24. Kaufman RJ, Wasley LC, Furie BC et al (1986) Expression, purification, and characterization of recombinant gamma-carboxylated factor IX synthesized in Chinese hamster ovary cells. J Biol Chem 261:9622–9628

    CAS  PubMed  Google Scholar 

  25. Wajih N, Hutson SM, Owen J, Wallin R (2005) Increased production of functional recombinant human clotting factor IX by baby hamster kidney cells engineered to overexpress VKORC1, the vitamin K 2,3-epoxide-reducing enzyme of the vitamin K cycle. J Biol Chem 280:31603–31607. doi:10.1074/jbc.M505373200

    Article  CAS  PubMed  Google Scholar 

  26. Kumar SR (2015) Industrial production of clotting factors: challenges of expression, and choice of host cells. Biotechnol J 10:995–1004. doi:10.1002/biot.201400666

    Article  CAS  PubMed  Google Scholar 

  27. Busby S, Kumar A, Joseph M et al (1985) Expression of active human factor IX in transfected cells. Nature 316:271–273. doi:10.1038/316271a0

    Article  CAS  PubMed  Google Scholar 

  28. Messier TL, Pittman DD, Long GL et al (1991) Cloning and expression in COS-1 cells of a full-length cDNA encoding human coagulation factor X. Gene. doi:10.1016/0378-1119(91)90141-W

  29. De La Salle H, Altenburger W, Elkaim R et al (1985) Active gamma-carboxylated factor IX expressed using recombinant DNA techniques. Nature 316:268–270

    Article  PubMed  Google Scholar 

  30. de Castilho Fernandes A, Fontes A, Gonsales N et al (2011) Stable and high-level production of recombinant factor IX in human hepatic cell line. Biotechnol Appl Biochem 58:243–249. doi:10.1002/bab.32

    Article  PubMed  Google Scholar 

  31. Enjolras N, Dargaud Y, Pérot E et al (2012) Human hepatoma cell line HuH-7 is an effective cellular system to produce recombinant factor IX with improved post-translational modi fi cations. Thromb Res 130:266–273

    Article  Google Scholar 

  32. Grinnell BW, Walls JD, Marks C et al (1990) Gamma-carboxylated isoforms of recombinant human protein S with different biologic properties. Blood 76:2546–2554

    CAS  PubMed  Google Scholar 

  33. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–72. doi:10.1099/0022-1317-36-1-59

    Article  CAS  PubMed  Google Scholar 

  34. Blostein M, Cuerquis J, Landry S, Galipeau J (2008) The carboxylation efficiency of the vitamin K-dependent clotting factors: studies with factor IX. Haemophilia 14:1063–1068. doi:10.1111/j.1365-2516.2008.01828.x

    Article  CAS  PubMed  Google Scholar 

  35. Spencer HT, Denning G, Gautney RE et al (2011) Lentiviral vector platform for production of bioengineered recombinant coagulation factor VIII. Mol Ther 19:302–309. doi:10.1038/mt.2010.239

    Article  CAS  PubMed  Google Scholar 

  36. Osborn JE, Walker DL (1968) Enhancement of infectivity of murine cytomegalovirus in vitro by centrifugal inoculation. J Virol 2:853–858

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan R, Zhang Y, Cai D et al (2015) Spinoculation enhances HBV infection in NTCP-reconstituted hepatocytes. PLoS One 10:e0129889–e0129889. doi:10.1371/journal.pone.0129889

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wajih N, Owen J, Wallin R (2008) Enhanced functional recombinant factor VII production by HEK 293 cells stably transfected with VKORC1 where the gamma-carboxylase inhibitor calumenin is stably suppressed by shRNA transfection. Thromb Res 122:405–410. doi:10.1016/j.thromres.2007.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cribbs AP, Kennedy A, Gregory B, Brennan FM (2013) Simplified production and concentration of lentiviral vectors to achieve high transduction in primary human T cells. BMC Biotechnol 13:98. doi:10.1186/1472-6750-13-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Segura MM, Mangion M, Gaillet B, Garnier A (2013) New developments in lentiviral vector design, production and purification. Expert Opin Biol Ther 13:987–1011. doi:10.1517/14712598.2013.779249

    Article  CAS  PubMed  Google Scholar 

  41. Reed SE, Staley EM, Mayginnes JP et al (2006) Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods 138:85–98. doi:10.1016/j.jviromet.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  42. Segura MM, Garnier A, Durocher Y et al (2010) New protocol for lentiviral vector mass production. Methods Mol Biol 614:39–52

    Article  CAS  PubMed  Google Scholar 

  43. Biaggio RT, Abreu-Neto MS, Covas DT, Swiech K (2015) Serum-free suspension culturing of human cells: adaptation, growth, and cryopreservation. Bioprocess Biosyst Eng 38:1495–1507. doi:10.1007/s00449-015-1392-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge São Paulo Research Foundation—FAPESP (2015/19017-6), Conselho Nacional de Pesquisa—CNPq (142406/2016-3), Centro de Pesquisa, Inovação e Difusão (CEPID), and National Institute of Science and Technology in Stem Cell and Cell Therapy—INCTC for financial support and Sandra Navarro for drawing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline de Sousa Bomfim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

de Sousa Bomfim, A., de Freitas, M.C.C., Covas, D.T., de Sousa Russo, E.M. (2018). Human Cells as Platform to Produce Gamma-Carboxylated Proteins. In: Picanço-Castro, V., Swiech, K. (eds) Recombinant Glycoprotein Production. Methods in Molecular Biology, vol 1674. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7312-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7312-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7311-8

  • Online ISBN: 978-1-4939-7312-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics