Skip to main content

Bioreactor-Based Production of Glycoproteins in Plant Cell Suspension Cultures

  • Protocol
  • First Online:
Recombinant Glycoprotein Production

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1674))

Abstract

Recombinant glycoproteins such as monoclonal antibodies have a major impact on modern healthcare systems, e.g., as the active pharmaceutical ingredients in anticancer drugs. A specific glycan profile is often necessary to achieve certain desirable activities, such as the effector functions of an antibody, receptor binding or a sufficient serum half-life. However, many expression systems produce glycan profiles that differ substantially from the preferred form (usually the form found in humans) or produce a diverse array of glycans with a range of in vivo activities, thus necessitating laborious and costly separation and purification processes. In contrast, protein glycosylation in plant cells is much more homogeneous than other systems, with only one or two dominant forms. Additionally, these glycan profiles tend to remain stable when the process and cultivation conditions are changed, making plant cells an ideal expression system to produce recombinant glycoproteins with uniform glycan profiles in a consistent manner. This chapter describes a protocol that uses fermentations using plant cell cultures to produce glycosylated proteins using two different types of bioreactors, a classical autoclavable STR 3-L and a wave reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

cdO2 :

Controller output for the oxygen control loop

dO2 :

Dissolved oxygen

DW:

Dry weight

FW:

Fresh weight

OUR:

Oxygen uptake rate

PCV:

Packed cell volume

RT:

Room temperature

STR:

Stirred tank reactor

VVM:

Volume per volume and minutes

References

  1. Nasto B (2007) Biotech at the beauty counter. Nat Biotechnol 25(6):617–619

    Article  CAS  PubMed  Google Scholar 

  2. Vojcic L, Pitzler C, Korfer G, Jakob F, Ronny M, Maurer KH, Schwaneberg U (2015) Advances in protease engineering for laundry detergents. New Biotechnol 32(6):629–634. doi:10.1016/j.nbt.2014.12.010

    Article  CAS  Google Scholar 

  3. Li Q, Yi L, Marek P, Iverson BL (2013) Commercial proteases: present and future. FEBS Lett 587(8):1155–1163. doi:10.1016/j.febslet.2012.12.019

    Article  CAS  PubMed  Google Scholar 

  4. Schuster AC, Burghardt M, Alfarhan A, Bueno A, Hedrich R, Leide J, Thomas J, Riederer M (2016) Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures. AoB Plants 8. doi:10.1093/aobpla/plw027

  5. Spiegel H, Stöger E, Twyman RM, Buyel JF (2016) Current status and perspectives of the molecular farming landscape. In: Kermode AR (ed) Molecular pharming: applications, challenges and emerging areas. Wiley-VCH, Weinheim

    Google Scholar 

  6. Buyel JF How plants can contribute to the supply of anti-cancer compounds. In: Malik S (ed) Biotechnoloy and production of anti-cancer compounds. Springer, Berlin

    Google Scholar 

  7. Caspi RR (2008) Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol 8(12):970–976. doi:10.1038/nri2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shaaltiel Y, Gingis-Velitski S, Tzaban S, Fiks N, Tekoah Y, Aviezer D (2015) Plant-based oral delivery of beta-glucocerebrosidase as an enzyme replacement therapy for Gaucher’s disease. Plant Biotechnol J 13(8):1033–1040. doi:10.1111/pbi.12366

    Article  CAS  PubMed  Google Scholar 

  9. Chen LQ, Drake MR, Resch MG, Greene ER, Himmel ME, Chaffey PK, Beckham GT, Tan ZP (2014) Specificity of O-glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydrate-binding modules. Proc Natl Acad Sci U S A 111(21):7612–7617. doi:10.1073/pnas.1402518111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hayes JM, Cosgrave EF, Struwe WB, Wormald M, Davey GP, Jefferis R, Rudd PM (2014) Glycosylation and Fc receptors. Curr Top Microbiol Immunol 382:165–199. doi:10.1007/978-3-319-07911-0_8

    CAS  PubMed  Google Scholar 

  11. Sareneva T, Pirhonen J, Cantell K, Julkunen I (1995) N-glycosylation of human interferon-gamma: glycans at Asn-25 are critical for protease resistance. Biochem J 308(Pt 1):9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94(8):1626–1635. doi:10.1002/jps.20319

    Article  CAS  PubMed  Google Scholar 

  13. Strasser R (2016) Plant protein glycosylation. Glycobiology. doi:10.1093/glycob/cww023

  14. Fischer R, Buyel JF, Holland T, Sack M, Schillberg S, Twyman RM Glyco-engineering of plant-based expression systems. In: Reichl U (ed) Glycobiotechnology, vol 10. Advances in biochemical engineering/biotechnology. Springer, Berlin

    Google Scholar 

  15. Tuse D (2011) Safety of plant-made pharmaceuticals product development and regulatory considerations based on case studies of two autologous human cancer vaccines. Hum Vaccines 7(3):322–330. doi:10.4161/Hv.7.3.14213

    Article  CAS  Google Scholar 

  16. Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8(5):564–587. doi:10.1111/j.1467-7652.2009.00497.x

    Article  CAS  PubMed  Google Scholar 

  17. Mor TS (2015) Molecular pharming's foot in the FDA’s door: protalix’s trailblazing story. Biotechnol Lett 37(11):2147–2150. doi:10.1007/s10529-015-1908-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bethencourt V (2009) Virus stalls Genzyme plant. Nat Biotechnol 27(8):681–681. doi:10.1038/nbt0809-681a

    Article  CAS  Google Scholar 

  19. Mavituna F, Park JM (1987) Size distribution of plant cell aggregates in batch culture. Chem Eng J 35(1):B9–B14. doi:10.1016/0300-9467(87)80045-X

    Article  CAS  Google Scholar 

  20. Nagata T, Hasezawa S, Depicker A (2013) Tobacco BY-2 Cells. Springer, Berlin

    Google Scholar 

  21. Holland T, Blessing D, Hellwig S, Sack M (2013) The in-line measurement of plant cell biomass using radio frequency impedance spectroscopy as a component of process analytical technology. Biotechnol J 8(10):1231–1240. doi:10.1002/biot.201300125

    CAS  PubMed  Google Scholar 

  22. Holland T (2013) Development of plant suspension cultures with regard to industrial production of biopharmaceuticals, Dissertation/Ph.D. thesis. Aachen, RWTH Aachen University. http://publications.rwth-aachen.de/record/229173/files/4829.pdf

    Google Scholar 

  23. Santos RB, Abranches R, Fischer R, Sack M, Holland T (2016) Putting the spotlight back on plant suspension cultures. Front Plant Sci 7:297. doi:10.3389/fpls.2016.00297

    Article  PubMed  PubMed Central  Google Scholar 

  24. Holland T, Sack M, Rademacher T, Schmale K, Altmann F, Stadlmann J, Fischer R, Hellwig S (2010) Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture. Biotechnol Bioeng 107(2):278–289. doi:10.1002/bit.22800

    Article  CAS  PubMed  Google Scholar 

  25. Trexler MM, McDonald KA, Jackman AP (2005) A cyclical semicontinuous process for production of human alpha 1-antitrypsin using metabolically induced plant cell suspension cultures. Biotechnol Prog 21(2):321–328. doi:10.1021/bp0498692

    Article  CAS  PubMed  Google Scholar 

  26. Hooker BS, Lee JM, An G (1990) Cultivation of plant cells in a stirred vessel: effect of impeller design. Biotechnol Bioeng 35(3):296–304. doi:10.1002/bit.260350311

    Article  CAS  PubMed  Google Scholar 

  27. Doran PM (1999) Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnol Prog 15(3):319–335. doi:10.1021/bp990042v

    Article  CAS  PubMed  Google Scholar 

  28. Eibl R, Werner S, Eibl D (2009) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Eng Biotechnol 115:55–87. doi:10.1007/10_2008_15

    CAS  PubMed  Google Scholar 

  29. Terrier B, Courtois D, Henault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Petiard V (2007) Two new disposable bioreactors for plant cell culture: the wave and undertow bioreactor and the slug bubble bioreactor. Biotechnol Bioeng 96(5):914–923. doi:10.1002/bit.21187

    Article  CAS  PubMed  Google Scholar 

  30. Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5(5):579–590. doi:10.1111/j.1467-7652.2007.00263.x

    Article  CAS  PubMed  Google Scholar 

  31. Wen SW, Jun He B, Liang H, Sun S (1996) A perfusion air-lift bioreactor for high density plant cell cultivation and secreted protein production. J Biotechnol 50(2):225–233. doi:10.1016/0168-1656(96)01568-4

    Article  Google Scholar 

  32. McDonald KA, Hong LM, Trombly DM, Xie Q, Jackman AP (2005) Production of human alpha-1-antitrypsin from transgenic rice cell culture in a membrane bioreactor. Biotechnol Prog 21(3):728–734. doi:10.1021/bp0496676

    Article  CAS  PubMed  Google Scholar 

  33. Tanaka H, Nishijima F, Suwa M, Iwamoto T (1983) Rotating drum fermentor for plant cell suspension cultures. Biotechnol Bioeng 25(10):2359–2370. doi:10.1002/bit.260251007

    Article  CAS  PubMed  Google Scholar 

  34. Xu J, Ge X, Dolan MC (2011) Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 29(3):278–299. doi:10.1016/j.biotechadv.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  35. Huang TK, McDonald KA (2012) Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 30(2):398–409. doi:10.1016/j.biotechadv.2011.07.016

    Article  CAS  PubMed  Google Scholar 

  36. WW S, Arias R (2003) Continuous plant cell perfusion culture: bioreactor characterization and secreted enzyme production. J Biosci Bioeng 95(1):13–20. doi:10.1016/S1389-1723(03)80142-1

    Article  Google Scholar 

  37. De Dobbeleer C, Cloutier M, Fouilland M, Legros R, Jolicoeur M (2006) A high-rate perfusion bioreactor for plant cells. Biotechnol Bioeng 95(6):1126–1137. doi:10.1002/bit.21077

    Article  PubMed  Google Scholar 

  38. Chmiel H (2011) Bioprozesstechnik, vol 3. Springer, Spektrum. doi:10.1007/978-3-8274-2477-8

    Book  Google Scholar 

  39. van Gulik WM, ten Hoopen HJ, Heijnen JJ (2001) The application of continuous culture for plant cell suspensions. Enzym Microb Technol 28(9–10):796–805

    Article  Google Scholar 

  40. Miller RA, Shyluk JP, Gamborg OL, Kirkpatrick JW (1968) Phytostat for continuous culture and automatic sampling of plant-cell suspensions. Science 159(3814):540–542

    Article  CAS  PubMed  Google Scholar 

  41. Winkler M (1990) Chemical engineering problems in biotechnology, vol 1. Springer, Amsterdam

    Google Scholar 

  42. Huang TK, Plesha MA, McDonald KA (2010) Semicontinuous bioreactor production of a recombinant human therapeutic protein using a chemically inducible viral amplicon expression system in transgenic plant cell suspension cultures. Biotechnol Bioeng 106(3):408–421. doi:10.1002/bit.22713

    CAS  PubMed  Google Scholar 

  43. Hogue RS, Lee JM, An G (1990) Production of a foreign protein product with genetically modified plant cells. Enzym Microb Technol 12(7):533–538

    Article  CAS  Google Scholar 

  44. Georgiev MI, Weber J, Maciuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83(5):809–823. doi:10.1007/s00253-009-2049-x

    Article  CAS  PubMed  Google Scholar 

  45. Schmale K, Rademacher T, Fischer R, Hellwig S (2006) Towards industrial usefulness - cryo-cell-banking of transgenic BY-2 cell cultures. J Biotechnol 124(1):302–311. doi:10.1016/j.jbiotec.2006.01.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Richard M Twyman for editorial assistance. This work was funded in part the Fraunhofer-Gesellschaft Internal Programs under Grant No. Attract 125-600164. The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Felix Buyel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Holland, T., Buyel, J.F. (2018). Bioreactor-Based Production of Glycoproteins in Plant Cell Suspension Cultures. In: Picanço-Castro, V., Swiech, K. (eds) Recombinant Glycoprotein Production. Methods in Molecular Biology, vol 1674. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7312-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7312-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7311-8

  • Online ISBN: 978-1-4939-7312-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics