Skip to main content

Platforms for Recombinant Therapeutic Glycoprotein Production

  • Protocol
  • First Online:
Recombinant Glycoprotein Production

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1674))

Abstract

The majority of FDA-approved biology-derived products are recombinant glycoproteins. These proteins have been used for the treatment of several diseases, with numerous products currently approved for clinical use. The choice of the expression system is a key step toward a successful functional protein production, since glycosylation influences yield, pharmacokinetics, biological activity, and immunogenicity. This chapter covers the general aspects of therapeutic recombinant glycoproteins and the platforms that are being employed for their production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 36(6):1110–1122

    Article  CAS  PubMed  Google Scholar 

  2. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7(1):21–39

    Article  CAS  PubMed  Google Scholar 

  3. Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32(10):992–1000

    Article  CAS  PubMed  Google Scholar 

  4. Sethuraman N, Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 17(4):341–346

    Article  CAS  PubMed  Google Scholar 

  5. Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev 28:147–175

    Article  CAS  PubMed  Google Scholar 

  6. Butler M (2006) Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by mammalian cell systems. Cytotechnology 50(1–3):57–76

    Article  CAS  PubMed  Google Scholar 

  7. Stowell SR, Ju T, Cummings RD (2015) Protein glycosylation in cancer. Annu Rev Pathol 10:473–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cummings RD, Pierce JM (2014) The challenge and promise of glycomics. Chem Biol 21(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sola RJ, Griebenow K (2010) Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 24(1):9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. METaK D (2006) Introduction to glycobiology, 2nd edn. Oxford University Press, New York, NY

    Google Scholar 

  11. Steentoft C, Vakhrushev SY, Vester-Christensen MB, Schjoldager KT, Kong Y, Bennett EP, Mandel U, Wandall H, Levery SB, Clausen H (2011) Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SIMPLECELL lines. Nat Methods 8(11):977–982

    Article  CAS  PubMed  Google Scholar 

  12. Zielinska DF, Gnad F, Wisniewski JR, Mann M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141(5):897–907

    Article  CAS  PubMed  Google Scholar 

  13. Flynne WG (2008) Biotechnology and bioengineering. Nova Publishers, Hauppauge, NY

    Google Scholar 

  14. Van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33(3):151–208

    Article  PubMed  Google Scholar 

  15. Butler M, Spearman M (2014) The choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol 30:107–112

    Article  CAS  PubMed  Google Scholar 

  16. Raju TS, Briggs JB, Borge SM, Jones AJ (2000) Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10(5):477–486

    Article  CAS  PubMed  Google Scholar 

  17. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20(6):700–707

    Article  CAS  PubMed  Google Scholar 

  18. Sandberg H, Kannicht C, Stenlund P, Dadaian M, Oswaldsson U, Cordula C, Walter O (2012) Functional characteristics of the novel, human-derived recombinant FVIII protein product, human-cl rhFVIII. Thromb Res 130(5):808–817

    Article  CAS  PubMed  Google Scholar 

  19. Kannicht C, Ramstrom M, Kohla G, Tiemeyer M, Casademunt E, Walter O, Sandberg H (2013) Characterisation of the post-translational modifications of a novel, human cell line-derived recombinant human factor VIII. Thromb Res 131(1):78–88

    Article  CAS  PubMed  Google Scholar 

  20. Brooks SA (2004) Appropriate glycosylation of recombinant proteins for human use: implications of choice of expression system. Mol Biotechnol 28(3):241–255

    Article  CAS  PubMed  Google Scholar 

  21. Fliedl L, Grillari J, Grillari-Voglauer R (2015) Human cell lines for the production of recombinant proteins: on the horizon. New Biotechnol 32(6):673–679

    Article  CAS  Google Scholar 

  22. Muchmore EA, Milewski M, Varki A, Diaz S (1989) Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool. J Biol Chem 264(34):20216–20223

    CAS  PubMed  Google Scholar 

  23. Lis H, Sharon N (1993) Protein glycosylation. Structural and functional aspects. Eur J Biochem 218(1):1–27

    Article  CAS  PubMed  Google Scholar 

  24. Lowe JB, Marth JD (2003) A genetic approach to mammalian glycan function. Annu Rev Biochem 72:643–691

    Article  CAS  PubMed  Google Scholar 

  25. Delorme E, Lorenzini T, Giffin J, Martin F, Jacobsen F, Boone T, Elliott S (1992) Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 31(41):9871–9876

    Article  CAS  PubMed  Google Scholar 

  26. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252

    Article  CAS  PubMed  Google Scholar 

  27. Wasley LC, Timony G, Murtha P, Stoudemire J, Dorner AJ, Caro J, Krieger M, Kaufman RJ (1991) The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin. Blood 77(12):2624–2632

    CAS  PubMed  Google Scholar 

  28. Fukuda MN, Sasaki H, Lopez L, Fukuda M (1989) Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73(1):84–89

    CAS  PubMed  Google Scholar 

  29. Croset A, Delafosse L, Gaudry JP, Arod C, Glez L, Losberger C, Begue D, Krstanovic A, Robert F, Vilbois F, Chevalet L, Antonsson B (2012) Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J Biotechnol 161(3):336–348

    Article  CAS  PubMed  Google Scholar 

  30. Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS (2007) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44(7):1524–1534

    Article  CAS  PubMed  Google Scholar 

  31. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949

    Article  CAS  PubMed  Google Scholar 

  32. Fournier J (2015) A review of glycan analysis requirements. Biopharm Int. http://www.biopharminternational.com/review-glycan-analysis-requirements

  33. Lingg N, Zhang P, Song Z, Bardor M (2012) The sweet tooth of biopharmaceuticals: importance of recombinant protein glycosylation analysis. Biotechnol J 7(12):1462–1472

    Article  CAS  PubMed  Google Scholar 

  34. Administration FaD (1999) International conference on harmonisation; guidance on specifications: test procedures and acceptance criteria for biotechnological/biological products. Notice. Food and Drug Administration, HHS. Fed Regist 64(159):44928–44935

    Google Scholar 

  35. Administration FaD (2005) International conference on harmonisation; guidance on Q5E comparability of biotechnological/biological products subject to changes in their manufacturing process; availability. Notice. Fed Regist 70(125):37861–37862

    Google Scholar 

  36. Zhang L, Luo S, Zhang B (2016) Glycan analysis of therapeutic glycoproteins. MAbs 8(2):205–215

    Article  CAS  PubMed  Google Scholar 

  37. Celik E, Calik P (2012) Production of recombinant proteins by yeast cells. Biotechnol Adv 30(5):1108–1118

    Article  CAS  PubMed  Google Scholar 

  38. Doran PM (2000) Foreign protein production in plant tissue cultures. Curr Opin Biotechnol 11(2):199–204

    Article  CAS  PubMed  Google Scholar 

  39. Schwarz F, Huang W, Li C, Schulz BL, Lizak C, Palumbo A, Numao S, Neri D, Aebi M, Wang L-X (2010) A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation. Nat Chem Biol 6(4):264–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jaffé SRP, Strutton B, Levarski Z, Pandhal J, Wright PC (2014) Escherichia coli as a glycoprotein production host: recent developments and challenges. Curr Opin Biotechnol 30:205–210

    Article  PubMed  Google Scholar 

  41. Nielsen J (2013) Production of biopharmaceutical proteins by yeast: advances through metabolic engineering. Bioengineered 4(4):207–211

    Article  PubMed  Google Scholar 

  42. Razaghi A, Tan E, Lua LH, Owens L, Karthikeyan OP, Heimann K (2017) Is Pichia pastoris a realistic platform for industrial production of recombinant human interferon gamma? Biologicals 45:52–60

    Article  CAS  PubMed  Google Scholar 

  43. Meehl MA, Stadheim TA (2014) Biopharmaceutical discovery and production in yeast. Curr Opin Biotechnol 30:120–127

    Article  CAS  PubMed  Google Scholar 

  44. Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426(2):227–223

    Article  CAS  PubMed  Google Scholar 

  45. Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18(5):387–392

    Article  CAS  PubMed  Google Scholar 

  46. Khan AH, Bayat H, Rajabibazl M, Sabri S, Rahimpour A (2017) Humanizing glycosylation pathways in eukaryotic expression systems. W J Microbiol Biotechnol 33(1):4

    Article  Google Scholar 

  47. Beck A, Reichert JM (2012) Marketing approval of mogamulizumab: a triumph for glyco-engineering. mAbs 4(4):419–425

    Article  PubMed  PubMed Central  Google Scholar 

  48. Paul M, Ma JK (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58(1):58–67

    Article  CAS  PubMed  Google Scholar 

  49. Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22(11):1415–1422

    Article  CAS  PubMed  Google Scholar 

  50. da Cunha NB, Vianna GR, da Almeida LT, Rech E (2014) Molecular farming of human cytokines and blood products from plants: challenges in biosynthesis and detection of plant-produced recombinant proteins. Biotechnol J 9(1):39–50

    Article  PubMed  Google Scholar 

  51. Fox JL (2012) First plant-made biologic approved. Nat Biotechnol 30(6):472–472

    Article  CAS  Google Scholar 

  52. Holland T, Sack M, Rademacher T, Schmale K, Altmann F, Stadlmann J, Fischer R, Hellwig S (2010) Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture. Biotechnol Bioeng 107(2):278–289

    Article  CAS  PubMed  Google Scholar 

  53. Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13(2):117–123

    Article  CAS  PubMed  Google Scholar 

  54. Toth AM, Kuo CW, Khoo KH, Jarvis DL (2014) A new insect cell glycoengineering approach provides baculovirus-inducible glycogene expression and increases human-type glycosylation efficiency. J Biotechnol 182–183:19–29

    Article  PubMed  Google Scholar 

  55. Cox MM (2012) Recombinant protein vaccines produced in insect cells. Vaccine 30(10):1759–1766

    Article  CAS  PubMed  Google Scholar 

  56. Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30(5):1158–1170

    Article  CAS  PubMed  Google Scholar 

  57. Browne SM, Al-Rubeai M (2007) Selection methods for high-producing mammalian cell lines. Trends Biotechnol 25(9):425–432

    Article  CAS  PubMed  Google Scholar 

  58. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–8.

    Google Scholar 

  59. Biaggio RT, Abreu-Neto MS, Covas DT, Swiech K (2015) Serum-free suspension culturing of human cells: adaptation, growth, and cryopreservation. Bioprocess Biosyst Eng 38(8):1495–1507

    Article  CAS  PubMed  Google Scholar 

  60. Swiech K, Picanco-Castro V, Covas DT (2017) Production of recombinant coagulation factors: are humans the best host cells? Bioengineered:1–9. doi:10.1080/21655979.2017.1279767

  61. Picanco-Castro V, Biaggio RT, Cova DT, Swiech K (2013) Production of recombinant therapeutic proteins in human cells: current achievements and future perspectives. Protein Pept Lett 20(12):1373–1381

    Article  CAS  PubMed  Google Scholar 

  62. Swiech K, Picanco-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84(1):147–153

    Article  CAS  PubMed  Google Scholar 

  63. PER.C6 Cell Lines. http://www.gmp-creativebiolabs.com/per-c6-cell-lines_74.htm. Accessed 23 Mar 2017

Download references

Acknowledgment

The authors acknowledge the São Paulo Research Foundation – FAPESP (Grants 2012/04629-8, 2013/08135-2 and 2016/02433-0), CAPES scholarship and the Center for Cell-based Therapy/CTC/FAPESP (Regional Blood Center of Ribeirão Preto) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamilla Swiech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mizukami, A., Caron, A.L., Picanço-Castro, V., Swiech, K. (2018). Platforms for Recombinant Therapeutic Glycoprotein Production. In: Picanço-Castro, V., Swiech, K. (eds) Recombinant Glycoprotein Production. Methods in Molecular Biology, vol 1674. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7312-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7312-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7311-8

  • Online ISBN: 978-1-4939-7312-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics