Skip to main content

Estimate Codon Usage Bias Using Codon Usage Analyzer (CUA)

  • Protocol
  • First Online:
Brachypodium Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1667))

Abstract

One amino acid is added to a growing peptide by a ribosome through reading triple nucleotides, i.e., a codon, each time. Twenty species of amino acids are often coded by 61 codons, so one amino acid can be coded by more than one codon and the codons coding the same amino acid are called synonymous. Intriguingly, synonymous codons’ usage is often uneven: some are used more often than their alternatives in a genome. The unevenness of codon usage is termed codon usage bias (CUB). CUB is widespread, and its causes and consequences have been under intensive investigation. To facilitate the studying of CUB, in this chapter we present a protocol of estimating CUB by using the free software Codon Usage Analyzer, and apply it to Brachypodium distachyon as an example. To accomplish this protocol, the readers need some basic command-line skills. Briefly, the protocol comprises four major steps: downloading data and software, setting up computing environment, preparing data, and estimating CUB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Vicario S, Moriyama EN, Powell JR (2007) Codon usage in twelve species of Drosophila. BMC Evol Biol 7:226

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH (2004) Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci U S A 101(10):3480–3485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129(3):897–907

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pop C, Rouskin S, Ingolia NT, Han L, Phizicky EM, Weissman JS, Koller D (2014) Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol Syst Biol 10:770

    Article  PubMed  PubMed Central  Google Scholar 

  5. Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science 342(6157):475–479

    Article  CAS  PubMed  Google Scholar 

  6. Bentele K, Saffert P, Rauscher R, Ignatova Z, Bluthgen N (2013) Efficient translation initiation dictates codon usage at gene start. Mol Syst Biol 9:675

    Article  PubMed  PubMed Central  Google Scholar 

  7. Qian W, Yang JR, Pearson NM, Maclean C, Zhang J (2012) Balanced codon usage optimizes eukaryotic translational efficiency. PLoS Genet 8(3):e1002603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singh ND, Davis JC, Petrov DA (2005) X-linked genes evolve higher codon bias in Drosophila and Caenorhabditis. Genetics 171(1):145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hambuch TM, Parsch J (2005) Patterns of synonymous codon usage in Drosophila melanogaster genes with sex-biased expression. Genetics 170(4):1691–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12(1):32–42

    Article  CAS  PubMed  Google Scholar 

  11. Eyre-Walker AC (1991) An analysis of codon usage in mammals: selection or mutation bias? J Mol Evol 33(5):442–449

    Article  CAS  PubMed  Google Scholar 

  12. Akashi H (1994) Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136(3):927–935

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang Z, Presgraves DC (2016) Drosophila X-linked genes have lower translation rates than autosomal genes. Mol Biol Evol 33(2):413–428

    Article  CAS  PubMed  Google Scholar 

  14. Sharp PM, Li WH (1987) The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15(3):1281–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. dos Reis M, Savva R, Wernisch L (2004) Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res 32(17):5036–5044

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ikemura T (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol 146(1):1–21

    Article  CAS  PubMed  Google Scholar 

  17. Wright F (1990) The “effective number of codons” used in a gene. Gene 87(1):23–29

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

ZZ is grateful to Dr. Daven C Presgraves for the strong support in ZZ’s research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zhang, Z., Sablok, G. (2018). Estimate Codon Usage Bias Using Codon Usage Analyzer (CUA). In: Sablok, G., Budak, H., Ralph, P. (eds) Brachypodium Genomics. Methods in Molecular Biology, vol 1667. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7278-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7278-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7276-0

  • Online ISBN: 978-1-4939-7278-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics