Skip to main content

Correlative SIM-STORM Microscopy

  • Protocol
Super-Resolution Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1663))

Abstract

The ability to specifically label subcellular structures or even proteins of interest in combination with the ability to look at live specimens turned fluorescence light microscopy into an invaluable tool. However, conventional light microscopy is diffraction limited, which restricts the lateral resolution to around 200 nm laterally and 600–800 nm axially. In 2014, the Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan W. Hell, and William E. Moerner for the development of super-resolved fluorescent microscopy techniques. Since then, it has become evident that imaging techniques that enable the visualization of structures below the diffraction limit are essential for the field of life sciences. However, each one of these approaches has inherent advantages and limitations. Here, we describe an imaging workflow suitable for combining structured illumination microscopy (SIM) with direct stochastic optical reconstruction microscopy (dSTORM) data. This is invaluable, since it allows us to put highly resolved dSTORM data into its cellular context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eggeling C et al (2015) Lens-based fluorescence nanoscopy. Q Rev Biophys 48:178–243

    Article  CAS  PubMed  Google Scholar 

  2. Turkowyd B, Virant D, Endesfelder U (2016) From single molecules to life: microscopy at the nanoscale. Anal Bioanal Chem 408:6885–6911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  PubMed  Google Scholar 

  4. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Article  CAS  PubMed  Google Scholar 

  5. Gustafsson MG, Agard DA, Sedat JW (1999) I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J Microsc 195:10–16

    Article  CAS  Google Scholar 

  6. Huang B et al (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muller-Reichert T, Verkade P (2014) Preface. Correlative light and electron microscopy II. Methods Cell Biol 124:xvii–xviii

    Article  PubMed  Google Scholar 

  8. Muller-Reichert T, Verkade P (2012) Introduction to correlative light and electron microscopy. Methods Cell Biol 111:xvii–xxix

    Article  PubMed  Google Scholar 

  9. Hamel V et al (2014) Correlative multicolor 3D SIM and STORM microscopy. Biomed Opt Express 5:3326–3336

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rossberger SB, Best G, Baddeley D, Heintzmann R, Birk U, Dithmar S, Cremer C (2013) Combination of structured illumination and single molecule localization microscopy in one setup. J Opt 15. http://iopscience.iop.org/article/10.1088/2040-8978/15/9/094003/meta;jsessionid=50E70D08A947F1419CE808327F9B9174.c4.iopscience.cld.iop.org

  11. Ovesny M et al (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thevenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7:27–41

    Article  CAS  PubMed  Google Scholar 

  13. Kunz WS, Kuznetsov AV, Gellerich FN (1993) Mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers is stimulated by caffeine. FEBS Lett 323:188–190

    Article  CAS  PubMed  Google Scholar 

  14. Muller M et al (2016) Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat Commun 7:10980

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Joao Firmino and Jens Rietdorf for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Seitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Burri, O., Laroche, T., Guiet, R., Seitz, A. (2017). Correlative SIM-STORM Microscopy. In: Erfle, H. (eds) Super-Resolution Microscopy. Methods in Molecular Biology, vol 1663. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7265-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7265-4_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7264-7

  • Online ISBN: 978-1-4939-7265-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics