Skip to main content

STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells

  • Protocol
Super-Resolution Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1663))

Abstract

Long time-lapse super-resolution imaging in live cells requires a labeling strategy that combines a bright, photostable fluorophore with a high-density localization probe. Lipids are ideal high-density localization probes, as they are >100 times more abundant than most membrane-bound proteins and simultaneously demark the boundaries of cellular organelles. Here, we describe Cer-SiR, a two-component, high-density lipid probe that is exceptionally photostable. Cer-SiR is generated in cells via a bioorthogonal reaction of two components: a ceramide lipid tagged with trans-cyclooctene (Cer-TCO) and a reactive, photostable Si-rhodamine dye (SiR-Tz). These components assemble within the Golgi apparatus of live cells to form Cer-SiR. Cer-SiR is benign to cellular function, localizes within the Golgi at a high density, and is sufficiently photostable to enable visualization of Golgi structure and dynamics by 3D confocal or long time-lapse STED microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  PubMed  Google Scholar 

  2. Huang B, Bates M, Zhuang XW (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Toomre D, Bewersdorf J (2010) A new wave of cellular imaging. Annu Rev Cell Dev Biol 26:285–314

    Article  CAS  PubMed  Google Scholar 

  4. Van De Linde S, Heilemann M, Sauer M (2012) Live-cell super-resolution imaging with synthetic fluorophores. Annu Rev Phys Chem 63:519–540

    Article  PubMed  Google Scholar 

  5. Fornasiero EF, Opazo F (2015) Super-resolution imaging for cell biologists. BioEssays 37:436–451

    Article  PubMed  Google Scholar 

  6. Uno SN, Tiwari DK, Kamiya M et al (2015) A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy 64:263–277

    Article  PubMed  Google Scholar 

  7. Chozinski TJ, Gagnon LA, Vaughan JC (2014) Twinkle, twinkle little star: photoswitchable fluorophores for super-resolution imaging. FEBS Lett 588:3603–3612

    Article  CAS  PubMed  Google Scholar 

  8. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  9. Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission – stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  CAS  PubMed  Google Scholar 

  11. Vicidomini G, Moneron G, Han KY et al (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8:571–U575

    Article  CAS  PubMed  Google Scholar 

  12. Westphal V, Rizzoli SO, Lauterbach MA et al (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320:246–249

    Article  CAS  PubMed  Google Scholar 

  13. Lukinavicius G, Umezawa K, Olivier N et al (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5:132–139

    Article  CAS  PubMed  Google Scholar 

  14. Bottanelli F, Kromann EB, Allgeyer ES et al (2016) Two-colour live-cell nanoscale imaging of intracellular targets. Nat Commun 7:10778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bottanelli F, Kilian N, Ernst AM et al (2017) A novel physiological role for ARF1 in the formation of bi-directional tubules from the Golgi. Mol Biol Cell 28(12):1676–1687. doi:10.1091/mbc.E16-12-0863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9:929–943

    Article  CAS  PubMed  Google Scholar 

  17. Heilemann M, Van De Linde S, Mukherjee A et al (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48:6903–6908

    Article  CAS  Google Scholar 

  18. Hinner MJ, Johnsson K (2010) How to obtain labeled proteins and what to do with them. Curr Opin Biotechnol 21:766–776

    Article  CAS  PubMed  Google Scholar 

  19. Nikic I, Plass T, Schraidt O et al (2014) Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew Chem Int Ed 53:2245–2249

    Article  CAS  Google Scholar 

  20. Uttamapinant C, Howe JD, Lang K et al (2015) Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. J Am Chem Soc 137:4602–4605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guidotti G (1972) Membrane proteins. Annu Rev Biochem 41:731–752

    Article  CAS  PubMed  Google Scholar 

  22. Quinn P, Griffiths G, Warren G (1984) Density of newly synthesized plasma-membrane proteins in intracellular membranes. 2. Biochemical-studies. J Cell Biol 98:2142–2147

    Article  CAS  PubMed  Google Scholar 

  23. Neef AB, Schultz C (2009) Selective fluorescence labeling of lipids in living cells. Angew Chem Int Ed 48:1498–1500

    Article  CAS  Google Scholar 

  24. Jao CY, Roth M, Welti R et al (2009) Metabolic labeling and direct imaging of choline phospholipids in vivo. Proc Natl Acad Sci U S A 106:15332–15337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang J, Seckute J, Cole CM et al (2012) Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. Angew Chem Int Ed 51:7476–7479

    Article  CAS  Google Scholar 

  26. Hang HC, Wilson JP, Charron G (2011) Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking. Acc Chem Res 44:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thiele C, Papan C, Hoelper D et al (2012) tracing fatty acid metabolism by click chemistry. ACS Chem Biol 7:2004–2011

    Article  CAS  PubMed  Google Scholar 

  28. Shroff H, Galbraith CG, Galbraith JA et al (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5:417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pagano RE, Martin OC, Kang HC et al (1991) a novel fluorescent ceramide analog for studying membrane traffic in animal-cells – accumulation at the golgi-apparatus results in altered spectral properties of the sphingolipid precursor. J Cell Biol 113:1267–1279

    Article  CAS  PubMed  Google Scholar 

  30. Marks DL, Bittman R, Pagano RE (2008) Use of bodipy-labeled sphingolipid and cholesterol analogs to examine membrane microdomains in cells. Histochem Cell Biol 130:819–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Erdmann RS, Takakura H, Thompson AD et al (2014) Super-resolution imaging of the Golgi in live cells with a bioorthogonal ceramide probe. Angew Chem Int Ed 53:10242–10246

    Article  CAS  Google Scholar 

  32. Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  PubMed Central  Google Scholar 

  33. Van Meer G, De Kroon AIPM (2011) Lipid map of the mammalian cell. J Cell Sci 124:5–8

    Article  PubMed  Google Scholar 

  34. Blackman ML, Royzen M, Fox JM (2008) Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 130:13518–13519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Devaraj NK, Hilderbrand S, Upadhyay R et al (2010) Bioorthogonal turn-on probes for imaging small molecules inside living cells. Angew Chem Int Ed 49:2869–2872

    Article  CAS  Google Scholar 

  36. Karver MR, Weissleder R, Hilderbrand SA (2011) Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. Bioconjug Chem 22:2263–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang J, Karver MR, Li WL et al (2012) Metal-catalyzed one-pot synthesis of tetrazines directly from aliphatic nitriles and hydrazine. Angew Chem Int Ed 51:5222–5225

    Article  CAS  Google Scholar 

  38. Carlson JCT, Meimetis LG, Hilderbrand SA et al (2013) BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes. Angew Chem Int Ed 52:6917–6920

    Article  CAS  Google Scholar 

  39. Dyba M, Keller J, Hell SW (2005) Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment. New J Phys 7:134

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Wellcome Trust Foundation and by the National Institutes of Health (GM83257 to A.S.). R.S.E. was supported by an Advanced Postdoc. Mobility fellowship from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alanna Schepartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Erdmann, R.S., Toomre, D., Schepartz, A. (2017). STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells. In: Erfle, H. (eds) Super-Resolution Microscopy. Methods in Molecular Biology, vol 1663. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7265-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7265-4_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7264-7

  • Online ISBN: 978-1-4939-7265-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics