Skip to main content

The Application of Humanized Mouse Models for the Study of Human Exclusive Viruses

  • Protocol
  • First Online:
Innate Antiviral Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1656))

  • 2495 Accesses

Abstract

The symbiosis between humans and viruses has allowed human tropic pathogens to evolve intricate means of modulating the human immune response to ensure its survival among the human population. In doing so, these viruses have developed profound mechanisms that mesh closely with our human biology. The establishment of this intimate relationship has created a species-specific barrier to infection, restricting the virus-associated pathologies to humans. This specificity diminishes the utility of traditional animal models. Humanized mice offer a model unique to all other means of study, providing an in vivo platform for the careful examination of human tropic viruses and their interaction with human cells and tissues. These types of animal models have provided a reliable medium for the study of human-virus interactions, a relationship that could otherwise not be investigated without questionable relevance to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Worobey M, Bjork A, Wertheim JO (2007) Point, counterpoint: the evolution of pathogenic viruses and their human hosts. Annu Rev Ecol Evol Syst 38(1):515–540. doi:10.1146/annurev.ecolsys.38.091206.095722

    Article  Google Scholar 

  2. Haley PJ (2003) Species differences in the structure and function of the immune system. Toxicology 188(1):49–71

    Article  CAS  Google Scholar 

  3. Yan EG, Munir KM (2004) Regulatory and ethical principles in research involving children and individuals with developmental disabilities. Ethics Behav 14(1):31–49. doi:10.1207/s15327019eb1401_3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Partridge TA (2013) The mdx mouse model as a surrogate for Duchenne muscular dystrophy. FEBS J 280(17):4177–4186. doi:10.1111/febs.12267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilson GK, Stamataki Z (2012) In vitro systems for the study of hepatitis C virus infection. Int J Hepatol 2012:292591. doi:10.1155/2012/292591

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marsden MD, Zack JA (2015) Studies of retroviral infection in humanized mice. Virology 479–480:297–309. doi:10.1016/j.virol.2015.01.017

    Article  CAS  PubMed  Google Scholar 

  7. Vandamme TF (2015) Rodent models for human diseases. Eur J Pharmacol 759:84–89. doi:10.1016/j.ejphar.2015.03.046

    Article  CAS  PubMed  Google Scholar 

  8. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7(2):118–130

    Article  CAS  Google Scholar 

  9. Akkina R (2013) New generation humanized mice for virus research: comparative aspects and future prospects. Virology 435(1):14–28. doi:10.1016/j.virol.2012.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sibal LR, Samson KJ (2001) Nonhuman primates: a critical role in current disease research. ILAR J 42(2):74–84. doi:10.1093/ilar.42.2.74

    Article  CAS  PubMed  Google Scholar 

  11. Messaoudi I, Estep R, Robinson B et al (2011) Nonhuman primate models of human immunology. Antioxid Redox Signal 14(2):261–273. doi:10.1089/ars.2010.3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lankau EW, Turner PV, Mullan RJ et al (2014) Use of nonhuman primates in research in North America. J Am Assoc Lab Anim Sci 53(3):278–282

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shultz LD, Brehm MA, Garcia-Martinez JV et al (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 12(11):786–798

    Article  CAS  Google Scholar 

  14. Bontrop RE (2001) Non-human primates: essential partners in biomedical research. Immunol Rev 183:5–9

    Article  CAS  Google Scholar 

  15. Barreiro LB, Marioni JC, Blekhman R et al (2010) Functional comparison of innate immune signaling pathways in primates. PLoS Genet 6(12):e1001249. doi:10.1371/journal.pgen.1001249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Justice MJ, Siracusa LD, Stewart AF (2011) Technical approaches for mouse models of human disease. Dis Model Mech 4(3):305–310. doi:10.1242/dmm.000901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davis PH, Stanley SL (2003) Breaking the species barrier: use of SCID mouse–human chimeras for the study of human infectious diseases. Cell Microbiol 5(12):849–860. doi:10.1046/j.1462-5822.2003.00321.x

    Article  CAS  PubMed  Google Scholar 

  18. Billerbeck E, Mommersteeg MC, Shlomai A et al (2016) Humanized mice efficiently engrafted with fetal hepatoblasts and syngeneic immune cells develop human monocytes and NK cells. J Hepatol 65(2):334–343. doi:10.1016/j.jhep.2016.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pearson T, Greiner DL, Shultz LD (2008) Creation of “humanized” mice to study human immunity. Curr Protoc Immunol. Chapter 15:Unit 15.21. doi:10.1002/0471142735.im1521s81

  20. Leung W, Ramirez M, Civin CI (1999) Quantity and quality of engrafting cells in cord blood and autologous mobilized peripheral blood. Biol Blood Marrow Transplant 5(2):69–76

    Article  CAS  Google Scholar 

  21. Holyoake TL, Nicolini FE, Eaves CJ (1999) Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp Hematol 27(9):1418–1427. doi:10.1016/S0301-472X(99)00078-8

    Article  CAS  PubMed  Google Scholar 

  22. McCune J, Kaneshima H, Krowka J et al (1991) The SCID-hu mouse: a small animal model for HIV infection and pathogenesis. Annu Rev Immunol 9:399–429. doi:10.1146/annurev.iy.09.040191.002151

    Article  CAS  PubMed  Google Scholar 

  23. Denton PW, Olesen R, Choudhary SK et al (2012) Generation of HIV latency in humanized BLT mice. J Virol 86(1):630–634. doi:10.1128/JVI.06120-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McCune JM (1996) Development and applications of the SCID-hu mouse model. Semin Immunol 8(4):187–196. doi:10.1006/smim.1996.0024

    Article  CAS  PubMed  Google Scholar 

  25. Nomura T, Watanabe T, Habu S (2008) Humanized mice. Preface. Curr Top Microbiol Immunol 324:v–vi

    PubMed  Google Scholar 

  26. Hioki K, Kuramochi T, Endoh S et al (2001) Lack of B cell leakiness in BALB/cA-nu, scid double mutant mice. Exp Anim 50(1):67–72

    Article  CAS  Google Scholar 

  27. Gershwin ME, Merchant B, Gelfand MC et al (1975) The natural history and immunopathology of outbred athymic (nude) mice. Clin Immunol Immunopathol 4(3):324–340

    Article  CAS  Google Scholar 

  28. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301(5900):527–530

    Article  CAS  Google Scholar 

  29. Bosma MJ, Carroll AM (1991) The SCID mouse mutant: definition, characterization, and potential uses. Ann Rev Immunol 9(1):323–350. doi:10.1146/annurev.iy.09.040191.001543

    Article  CAS  Google Scholar 

  30. Mombaerts P, Iacomini J, Johnson RS et al (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68(5):869–877. doi:10.1016/0092-8674(92)90030-G

    Article  CAS  PubMed  Google Scholar 

  31. Shinkai Y, Rathbun G, Lam KP et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68(5):855–867

    Article  CAS  Google Scholar 

  32. Shultz LD, Schweitzer PA, Christianson SW et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154(1):180–191

    CAS  PubMed  Google Scholar 

  33. Brehm MA, Shultz LD, Luban J et al (2013) Overcoming current limitations in humanized mouse research. J Infect Dis 208(Suppl 2):S125–S130. doi:10.1093/infdis/jit319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Halstead SB (2015) Pathogenesis of dengue: dawn of a new era. F1000Res 4. doi:10.12688/f1000research.7024.1

  35. Screaton G, Mongkolsapaya J, Yacoub S et al (2015) New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 15(12):745–759. doi:10.1038/nri3916

    Article  CAS  PubMed  Google Scholar 

  36. Zompi S, Harris E (2012) Animal models of dengue virus infection. Virus 4(1):62–82. doi:10.3390/v4010062

    Article  CAS  Google Scholar 

  37. Whitehead SS, Blaney JE, Durbin AP et al (2007) Prospects for a dengue virus vaccine. Nat Rev Microbiol 5(7):518–528. doi:10.1038/nrmicro1690

    Article  CAS  PubMed  Google Scholar 

  38. Bente DA, Melkus MW, Garcia JV et al (2005) Dengue fever in humanized NOD/SCID mice. J Virol 79(21):13797–13799. doi:10.1128/JVI.79.21.13797-13799.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yauch LE, Shresta S (2008) Mouse models of dengue virus infection and disease. Antivir Res 80(2):87–93. doi:10.1016/j.antiviral.2008.06.010

    Article  CAS  PubMed  Google Scholar 

  40. Wu SJ, Hayes CG, Dubois DR et al (1995) Evaluation of the severe combined immunodeficient (SCID) mouse as an animal model for dengue viral infection. Am J Trop Med Hyg 52(5):468–476

    Article  CAS  Google Scholar 

  41. Bente DA, Rico-Hesse R (2006) Models of dengue virus infection. Drug Discov Today Dis Models 3(1):97–103. doi:10.1016/j.ddmod.2006.03.014

    Article  PubMed  PubMed Central  Google Scholar 

  42. Palucka AK, Gatlin J, Blanck JP et al (2003) Human dendritic cell subsets in NOD/SCID mice engrafted with CD34+ hematopoietic progenitors. Blood 102(9):3302–3310. doi:10.1182/blood-2003-02-0384

    Article  CAS  PubMed  Google Scholar 

  43. Cravens PD, Melkus MW, Padgett-Thomas A et al (2005) Development and activation of human dendritic cells in vivo in a xenograft model of human hematopoiesis. Stem Cells 23(2):264–278. doi:10.1634/stemcells.2004-0116

    Article  PubMed  Google Scholar 

  44. Kuruvilla JG, Troyer RM, Devi S et al (2007) Dengue virus infection and immune response in humanized RAG2(−/−)gamma(c)(−/−) (RAG-hu) mice. Virology 369(1):143–152. doi:10.1016/j.virol.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  45. Mota J, Rico-Hesse R (2009) Humanized mice show clinical signs of dengue fever according to infecting virus genotype. J Virol 83(17):8638–8645. doi:10.1128/jvi.00581-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jaiswal S, Pearson T, Friberg H et al (2009) Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice. PLoS One 4(10):e7251. doi:10.1371/journal.pone.0007251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jaiswal S, Pazoles P, Woda M et al (2012) Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice. Immunology 136(3):334–343. doi:10.1111/j.1365-2567.2012.03585.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jaiswal S, Smith K, Ramirez A et al (2015) Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice. Exp Biol Med (Maywood) 240(1):67–78. doi:10.1177/1535370214546273

    Article  CAS  Google Scholar 

  49. Frias-Staheli N, Dorner M, Marukian S et al (2014) Utility of humanized BLT mice for analysis of dengue virus infection and antiviral drug testing. J Virol 88(4):2205–2218. doi:10.1128/JVI.03085-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cox J, Mota J, Sukupolvi-Petty S et al (2012) Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. J Virol 86(14):7637–7649. doi:10.1128/jvi.00534-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mota J, Rico-Hesse R (2011) Dengue virus tropism in humanized mice recapitulates human dengue fever. PLoS One 6(6):e20762. doi:10.1371/journal.pone.0020762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Subramanya S, Kim SS, Abraham S et al (2010) Targeted delivery of small interfering RNA to human dendritic cells to suppress dengue virus infection and associated proinflammatory cytokine production. J Virol 84(5):2490–2501. doi:10.1128/JVI.02105-08

    Article  CAS  PubMed  Google Scholar 

  53. Sridharan A, Chen Q, Tang KF et al (2013) Inhibition of megakaryocyte development in the bone marrow underlies dengue virus-induced thrombocytopenia in humanized mice. J Virol 87(21):11648–11658. doi:10.1128/JVI.01156-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnson KM, Lange JV, Webb PA et al (1977) Isolation and partial characterisation of a new virus causing acute haemorrhagic fever in Zaire. Lancet 1(8011):569–571

    Article  CAS  Google Scholar 

  55. Martinez MJ, Salim AM, Hurtado JC et al (2015) Ebola virus infection: overview and update on prevention and treatment. Infect Dis Ther 4(4):365–390. doi:10.1007/s40121-015-0079-5

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lever RA, Whitty CJ (2016) Ebola virus disease: emergence, outbreak and future directions. Br Med Bull 117(1):95–106. doi:10.1093/bmb/ldw005

    Article  CAS  PubMed  Google Scholar 

  57. Ludtke A, Oestereich L, Ruibal P et al (2015) Ebola virus disease in mice with transplanted human hematopoietic stem cells. J Virol 89(8):4700–4704. doi:10.1128/JVI.03546-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bray M (2001) The role of the type I interferon response in the resistance of mice to filovirus infection. J Gen Virol 82(Pt 6):1365–1373. doi:10.1099/0022-1317-82-6-1365

    Article  CAS  PubMed  Google Scholar 

  59. Ebihara H, Takada A, Kobasa D et al (2006) Molecular determinants of Ebola virus virulence in mice. PLoS Pathog 2(7):e73. doi:10.1371/journal.ppat.0020073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prescott J, Feldmann H (2016) Humanized mice—a neoteric animal disease model for Ebola virus? J Infect Dis 213(5):691–693. doi:10.1093/infdis/jiv539

    Article  PubMed  Google Scholar 

  61. Bird BH, Spengler JR, Chakrabarti AK et al (2016) Humanized mouse model of Ebola virus disease mimics the immune responses in human disease. J Infect Dis 213(5):703–711. doi:10.1093/infdis/jiv538

    Article  CAS  PubMed  Google Scholar 

  62. Fujiwara S, Matsuda G, Imadome K (2013) Humanized mouse models of epstein-barr virus infection and associated diseases. Pathogens 2(1):153–176. doi:10.3390/pathogens2010153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fujiwara S, Imadome K, Takei M (2015) Modeling EBV infection and pathogenesis in new-generation humanized mice. Exp Mol Med 47:e135. doi:10.1038/emm.2014.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Munz C (2015) EBV infection of mice with reconstituted human immune system components. Curr Top Microbiol Immunol 391:407–423. doi:10.1007/978-3-319-22834-1_14

    Article  CAS  PubMed  Google Scholar 

  65. Rowe M, Young LS, Crocker J et al (1991) Epstein-Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse model: implications for the pathogenesis of EBV-positive lymphomas in man. J Exp Med 173(1):147–158

    Article  CAS  Google Scholar 

  66. Gujer C, Chatterjee B, Landtwing V et al (2015) Animal models of Epstein Barr virus infection. Curr Opin Virol 13:6–10. doi:10.1016/j.coviro.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  67. Ok CY, Li L, Young KH (2015) EBV-driven B-cell lymphoproliferative disorders: from biology, classification and differential diagnosis to clinical management. Exp Mol Med 47:e132. doi:10.1038/emm.2014.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Takashima K, Ohashi M, Kitamura Y et al (2008) A new animal model for primary and persistent Epstein-Barr virus infection: human EBV-infected rabbit characteristics determined using sequential imaging and pathological analysis. J Med Virol 80(3):455–466. doi:10.1002/jmv.21102

    Article  CAS  PubMed  Google Scholar 

  69. Kutok JL, Wang F (2006) Spectrum of Epstein-Barr virus-associated diseases. Annu Rev Pathol 1:375–404. doi:10.1146/annurev.pathol.1.110304.100209

    Article  CAS  PubMed  Google Scholar 

  70. Ahmed EH, Baiocchi RA (2016) Murine models of Epstein-Barr virus-associated lymphomagenesis. ILAR J 57(1):55–62. doi:10.1093/ilar/ilv074

    Article  CAS  PubMed  Google Scholar 

  71. Chatterjee B, Leung CS, Munz C (2014) Animal models of Epstein Barr virus infection. J Immunol Methods 410:80–87. doi:10.1016/j.jim.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  72. Lieberman PM (2014) Epstein-Barr Virus Turns 50. Science (New York, NY) 343(6177):1323–1325. doi:10.1126/science.1252786

    Article  CAS  Google Scholar 

  73. Mosier DE, Gulizia RJ, Baird SM et al (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335(6187):256–259. doi:10.1038/335256a0

    Article  CAS  PubMed  Google Scholar 

  74. Mosier D, Gulizia R, Baird S et al (1989) B cell lymphomas in SCID mice engrafted with human peripheral blood leukocytes. Blood 74(Suppl 1):52a

    Google Scholar 

  75. Okano M, Taguchi Y, Nakamine H et al (1990) Characterization of Epstein-Barr virus-induced lymphoproliferation derived from human peripheral blood mononuclear cells transferred to severe combined immunodeficient mice. Am J Pathol 137(3):517–522

    CAS  PubMed  PubMed Central  Google Scholar 

  76. McCune JM (1991) SCID mice as immune system models. Curr Opin Immunol 3(2):224–228. doi:10.1016/0952-7915(91)90055-6

    Article  CAS  PubMed  Google Scholar 

  77. Johannessen I, Crawford DH (1999) In vivo models for Epstein-Barr virus (EBV)-associated B cell lymphoproliferative disease (BLPD). Rev Med Virol 9(4):263–277

    Article  CAS  Google Scholar 

  78. Picchio GR, Kobayashi R, Kirven M et al (1992) Heterogeneity among Epstein-Barr virus-seropositive donors in the generation of Immunoblastic B-cell lymphomas in SCID mice receiving human peripheral blood leukocyte grafts. Cancer Res 52(9):2468–2477

    CAS  PubMed  Google Scholar 

  79. Veronese ML, Veronesi A, D'Andrea E et al (1992) Lymphoproliferative disease in human peripheral blood mononuclear cell-injected SCID mice: I. T lymphocyte requirement for B cell tumor generation. J Exp Med 176(6):1763–1767

    Article  CAS  Google Scholar 

  80. Mosier DE (1996) Viral pathogenesis in hu-PBL-SCID mice. Semin Immunol 8(4):255–262. doi:10.1006/smim.1996.0032

    Article  CAS  PubMed  Google Scholar 

  81. Baiocchi RA, Ross ME, Tan JC et al (1995) Lymphomagenesis in the SCID-hu mouse involves abundant production of human interleukin-10. Blood 85(4):1063–1074

    CAS  PubMed  Google Scholar 

  82. Islas-Ohlmayer M, Padgett-Thomas A, Domiati-Saad R et al (2004) Experimental infection of NOD/SCID mice reconstituted with human CD34+ cells with Epstein-Barr virus. J Virol 78(24):13891–13900. doi:10.1128/JVI.78.24.13891-13900.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ma SD, Hegde S, Young KH et al (2011) A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol 85(1):165–177. doi:10.1128/JVI.01512-10

    Article  CAS  PubMed  Google Scholar 

  84. Wagar EJ, Cromwell MA, Shultz LD et al (2000) Regulation of human cell engraftment and development of EBV-related lymphoproliferative disorders in Hu-PBL-scid mice. J Immunol 165(1):518–527

    Article  CAS  Google Scholar 

  85. Yajima M, Imadome K, Nakagawa A et al (2008) A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis 198(5):673–682. doi:10.1086/590502

    Article  CAS  PubMed  Google Scholar 

  86. Yajima M, Imadome K, Nakagawa A et al (2009) T cell-mediated control of Epstein-Barr virus infection in humanized mice. J Infect Dis 200(10):1611–1615. doi:10.1086/644644

    Article  CAS  PubMed  Google Scholar 

  87. Kuwana Y, Takei M, Yajima M et al (2011) Epstein-Barr virus induces erosive arthritis in humanized mice. PLoS One 6(10):e26630. doi:10.1371/journal.pone.0026630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Goudarzipour K, Kajiyazdi M, Mahdaviyani A (2013) Epstein-barr virus-induced hemophagocytic lymphohistiocytosis. Int J Hematol Oncol Stem Cell Res 7(1):42–45

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sato K, Misawa N, Nie C et al (2011) A novel animal model of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood 117(21):5663–5673. doi:10.1182/blood-2010-09-305979

    Article  CAS  PubMed  Google Scholar 

  90. Lee EK, Joo EH, Song KA et al (2015) Effects of lymphocyte profile on development of EBV-induced lymphoma subtypes in humanized mice. Proc Natl Acad Sci U S A 112(42):13081–13086. doi:10.1073/pnas.1407075112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chijioke O, Muller A, Feederle R et al (2013) Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep 5(6):1489–1498. doi:10.1016/j.celrep.2013.11.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. White RE, Ramer PC, Naresh KN et al (2012) EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J Clin Invest 122(4):1487–1502. doi:10.1172/JCI58092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wahl A, Linnstaedt SD, Esoda C et al (2013) A cluster of virus-encoded microRNAs accelerates acute systemic Epstein-Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. J Virol 87(10):5437–5446. doi:10.1128/JVI.00281-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Antsiferova O, Muller A, Ramer PC et al (2014) Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLoS Pathog 10(8):e1004333. doi:10.1371/journal.ppat.1004333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Traggiai E, Chicha L, Mazzucchelli L et al (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304(5667):104–107. doi:10.1126/science.1093933

    Article  CAS  PubMed  Google Scholar 

  96. Griffiths P, Baraniak I, Reeves M (2015) The pathogenesis of human cytomegalovirus. J Pathol 235(2):288–297. doi:10.1002/path.4437

    Article  CAS  PubMed  Google Scholar 

  97. Jean Beltran PM, Cristea IM (2014) The life cycle and pathogenesis of human cytomegalovirus infection: lessons from proteomics. Expert Rev Proteomics 11(6):697–711. doi:10.1586/14789450.2014.971116

    Article  CAS  PubMed  Google Scholar 

  98. Crawford LB, Streblow DN, Hakki M et al (2015) Humanized mouse models of human cytomegalovirus infection. Curr Opin Virol 13:86–92. doi:10.1016/j.coviro.2015.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Maidji E, Kosikova G, Joshi P et al (2012) Impaired surfactant production by alveolar epithelial cells in a SCID-hu lung mouse model of congenital human cytomegalovirus infection. J Virol 86(23):12795–12805. doi:10.1128/JVI.01054-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Prichard MN, Quenelle DC, Bidanset DJ et al (2006) Human cytomegalovirus UL27 is not required for viral replication in human tissue implanted in SCID mice. Virol J 3:18. doi:10.1186/1743-422X-3-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mocarski ES, Bonyhadi M, Salimi S et al (1993) Human cytomegalovirus in a SCID-hu mouse: thymic epithelial cells are prominent targets of viral replication. Proc Natl Acad Sci U S A 90(1):104–108

    Article  CAS  Google Scholar 

  102. Smith MS, Goldman DC, Bailey AS et al (2010) Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model. Cell Host Microbe 8(3):284–291. doi:10.1016/j.chom.2010.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Revello MG, Gerna G (2010) Human cytomegalovirus tropism for endothelial/epithelial cells: scientific background and clinical implications. Rev Med Virol 20(3):136–155. doi:10.1002/rmv.645

    Article  CAS  PubMed  Google Scholar 

  104. Brown JM, Kaneshima H, Mocarski ES (1995) Dramatic interstrain differences in the replication of human cytomegalovirus in SCID-hu mice. J Infect Dis 171(6):1599–1603

    Article  CAS  Google Scholar 

  105. Wang W, Taylor SL, Leisenfelder SA et al (2005) Human cytomegalovirus genes in the 15-kilobase region are required for viral replication in implanted human tissues in SCID mice. J Virol 79(4):2115–2123. doi:10.1128/JVI.79.4.2115-2123.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tabata T, Petitt M, Fang-Hoover J et al (2012) Cytomegalovirus impairs cytotrophoblast-induced lymphangiogenesis and vascular remodeling in an in vivo human placentation model. Am J Pathol 181(5):1540–1559. doi:10.1016/j.ajpath.2012.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kawahara T, Lisboa LF, Cader S et al (2013) Human cytomegalovirus infection in humanized liver chimeric mice. Hepatol Res 43(6):679–684. doi:10.1111/j.1872-034X.2012.01116.x

    Article  CAS  PubMed  Google Scholar 

  108. Kern ER, Rybak RJ, Hartline CB et al (2001) Predictive efficacy of SCID-hu mouse models for treatment of human cytomegalovirus infections. Antivir Chem Chemother 12(Suppl 1):149–156

    CAS  PubMed  Google Scholar 

  109. Kern ER, Hartline CB, Rybak RJ et al (2004) Activities of benzimidazole d- and l-ribonucleosides in animal models of cytomegalovirus infections. Antimicrob Agents Chemother 48(5):1749–1755

    Article  CAS  Google Scholar 

  110. Bravo FJ, Cardin RD, Bernstein DI (2007) A model of human cytomegalovirus infection in severe combined immunodeficient mice. Antivir Res 76(2):104–110. doi:10.1016/j.antiviral.2007.06.008

    Article  CAS  PubMed  Google Scholar 

  111. Lischka P, Hewlett G, Wunberg T et al (2010) In vitro and in vivo activities of the novel anticytomegalovirus compound AIC246. Antimicrob Agents Chemother 54(3):1290–1297. doi:10.1128/AAC.01596-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Weber O, Bender W, Eckenberg P et al (2001) Inhibition of murine cytomegalovirus and human cytomegalovirus by a novel non-nucleosidic compound in vivo. Antivir Res 49(3):179–189

    Article  CAS  Google Scholar 

  113. Hakki M, Goldman DC, Streblow DN et al (2014) HCMV infection of humanized mice after transplantation of G-CSF-mobilized peripheral blood stem cells from HCMV-seropositive donors. Biol Blood Marrow Transplant 20(1):132–135. doi:10.1016/j.bbmt.2013.10.019

    Article  CAS  PubMed  Google Scholar 

  114. Umashankar M, Petrucelli A, Cicchini L et al (2011) A novel human cytomegalovirus locus modulates cell type-specific outcomes of infection. PLoS Pathog 7(12):e1002444. doi:10.1371/journal.ppat.1002444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Houghton M (2009) Discovery of the hepatitis C virus. Liver Int 29(Suppl 1):82–88. doi:10.1111/j.1478-3231.2008.01925.x

    Article  PubMed  Google Scholar 

  116. Washburn ML, Bility MT, Zhang L et al (2011) A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 140(4):1334–1344. doi:10.1053/j.gastro.2011.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. von Schaewen M, Ploss A (2014) Murine models of hepatitis C: what can we look forward to? Antivir Res 104:15–22. doi:10.1016/j.antiviral.2014.01.007

    Article  CAS  Google Scholar 

  118. Marra E, Turrini P, Tripodi M et al (2012) Intrablastocyst injection with human CD34+/CD133+ cells increase survival of immunocompetent fumarylacetoacetate hydrolase knockout mice. Lab Anim 46(4):280–286. doi:10.1258/la.2012.012038

    Article  CAS  PubMed  Google Scholar 

  119. Meuleman P, Leroux-Roels G (2008) The human liver-uPA-SCID mouse: a model for the evaluation of antiviral compounds against HBV and HCV. Antivir Res 80(3):231–238. doi:10.1016/j.antiviral.2008.07.006

    Article  CAS  PubMed  Google Scholar 

  120. Mesalam AA, Vercauteren K, Meuleman P (2016) Mouse systems to model hepatitis C virus treatment and associated resistance. Virus 8(6):176. doi:10.3390/v8060176

    Article  CAS  Google Scholar 

  121. Dandri M, Burda MR, Torok E et al (2001) Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology 33(4):981–988. doi:10.1053/jhep.2001.23314

    Article  CAS  PubMed  Google Scholar 

  122. Bissig KD, Wieland SF, Tran P et al (2010) Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest 120(3):924–930. doi:10.1172/JCI40094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tesfaye A, Stift J, Maric D et al (2013) Chimeric mouse model for the infection of hepatitis B and C viruses. PLoS One 8(10):e77298. doi:10.1371/journal.pone.0077298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kosaka K, Hiraga N, Imamura M et al (2013) A novel TK-NOG based humanized mouse model for the study of HBV and HCV infections. Biochem Biophys Res Commun 441(1):230–235. doi:10.1016/j.bbrc.2013.10.040

    Article  CAS  PubMed  Google Scholar 

  125. Heckel JL, Sandgren EP, Degen JL et al (1990) Neonatal bleeding in transgenic mice expressing urokinase-type plasminogen activator. Cell 62(3):447–456

    Article  CAS  Google Scholar 

  126. Rhim JA, Sandgren EP, Degen JL et al (1994) Replacement of diseased mouse liver by hepatic cell transplantation. Science 263(5150):1149–1152

    Article  CAS  Google Scholar 

  127. Azuma H, Paulk N, Ranade A et al (2007) Robust expansion of human hepatocytes in fah−/−/Rag2−/−/Il2rg−/− mice. Nat Biotechnol 25(8):903–910. doi:10.1038/nbt1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Joyce MA, Walters KA, Lamb SE et al (2009) HCV induces oxidative and ER stress, and sensitizes infected cells to apoptosis in SCID/Alb-uPA mice. PLoS Pathog 5(2):e1000291. doi:10.1371/journal.ppat.1000291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fafi-Kremer S, Fofana I, Soulier E et al (2010) Viral entry and escape from antibody-mediated neutralization influence hepatitis C virus reinfection in liver transplantation. J Exp Med 207(9):2019–2031. doi:10.1084/jem.20090766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Brown RJ, Hudson N, Wilson G et al (2012) Hepatitis C virus envelope glycoprotein fitness defines virus population composition following transmission to a new host. J Virol 86(22):11956–11966. doi:10.1128/JVI.01079-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Singaravelu R, Chen R, Lyn RK et al (2014) Hepatitis C virus induced up-regulation of microRNA-27: a novel mechanism for hepatic steatosis. Hepatology 59(1):98–108. doi:10.1002/hep.26634

    Article  CAS  PubMed  Google Scholar 

  132. Vassilaki N, Friebe P, Meuleman P et al (2008) Role of the hepatitis C virus core+1 open reading frame and core cis-acting RNA elements in viral RNA translation and replication. J Virol 82(23):11503–11515. doi:10.1128/JVI.01640-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gottwein JM, Jensen TB, Mathiesen CK et al (2011) Development and application of hepatitis C reporter viruses with genotype 1 to 7 core-nonstructural protein 2 (NS2) expressing fluorescent proteins or luciferase in modified JFH1 NS5A. J Virol 85(17):8913–8928. doi:10.1128/JVI.00049-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pietschmann T, Zayas M, Meuleman P et al (2009) Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog 5(6):e1000475. doi:10.1371/journal.ppat.1000475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kaul A, Woerz I, Meuleman P et al (2007) Cell culture adaptation of hepatitis C virus and in vivo viability of an adapted variant. J Virol 81(23):13168–13179. doi:10.1128/JVI.01362-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vanwolleghem T, Bukh J, Meuleman P et al (2008) Polyclonal immunoglobulins from a chronic hepatitis C virus patient protect human liver-chimeric mice from infection with a homologous hepatitis C virus strain. Hepatology 47(6):1846–1855. doi:10.1002/hep.22244

    Article  CAS  PubMed  Google Scholar 

  137. Law M, Maruyama T, Lewis J et al (2008) Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat Med 14(1):25–27. doi:10.1038/nm1698

    Article  CAS  PubMed  Google Scholar 

  138. Meuleman P, Hesselgesser J, Paulson M et al (2008) Anti-CD81 antibodies can prevent a hepatitis C virus infection in vivo. Hepatology 48(6):1761–1768. doi:10.1002/hep.22547

    Article  CAS  PubMed  Google Scholar 

  139. Kneteman NM, Weiner AJ, O'Connell J et al (2006) Anti-HCV therapies in chimeric scid-Alb/uPA mice parallel outcomes in human clinical application. Hepatology 43(6):1346–1353. doi:10.1002/hep.21209

    Article  CAS  PubMed  Google Scholar 

  140. Reiser M, Hinrichsen H, Benhamou Y et al (2005) Antiviral efficacy of NS3-serine protease inhibitor BILN-2061 in patients with chronic genotype 2 and 3 hepatitis C. Hepatology 41(4):832–835. doi:10.1002/hep.20612

    Article  CAS  PubMed  Google Scholar 

  141. Vanwolleghem T, Meuleman P, Libbrecht L et al (2007) Ultra-rapid cardiotoxicity of the hepatitis C virus protease inhibitor BILN 2061 in the Urokinase-type plasminogen activator mouse. Gastroenterology 133(4):1144–1155. doi:10.1053/j.gastro.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  142. Inoue K, Umehara T, Ruegg UT et al (2007) Evaluation of a cyclophilin inhibitor in hepatitis C virus-infected chimeric mice in vivo. Hepatology 45(4):921–928. doi:10.1002/hep.21587

    Article  CAS  PubMed  Google Scholar 

  143. Umehara T, Sudoh M, Yasui F et al (2006) Serine palmitoyltransferase inhibitor suppresses HCV replication in a mouse model. Biochem Biophys Res Commun 346(1):67–73. doi:10.1016/j.bbrc.2006.05.085

    Article  CAS  PubMed  Google Scholar 

  144. Hsu EC, Hsi B, Hirota-Tsuchihara M et al (2003) Modified apoptotic molecule (BID) reduces hepatitis C virus infection in mice with chimeric human livers. Nat Biotechnol 21(5):519–525. doi:10.1038/nbt817

    Article  CAS  PubMed  Google Scholar 

  145. Overturf K, Al-Dhalimy M, Tanguay R et al (1996) Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat Genet 12(3):266–273. doi:10.1038/ng0396-266

    Article  CAS  PubMed  Google Scholar 

  146. Shafritz DA (2007) A human hepatocyte factory. Nat Biotechnol 25(8):871–872. doi:10.1038/nbt0807-871

    Article  CAS  PubMed  Google Scholar 

  147. Robinet E, Baumert TF (2011) A first step towards a mouse model for hepatitis C virus infection containing a human immune system. J Hepatol 55(3):718–720. doi:10.1016/j.jhep.2011.02.038

    Article  PubMed  Google Scholar 

  148. Gutti TL, Knibbe JS, Makarov E et al (2014) Human hepatocytes and hematolymphoid dual reconstitution in treosulfan-conditioned uPA-NOG mice. Am J Pathol 184(1):101–109. doi:10.1016/j.ajpath.2013.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Strick-Marchand H, Dusseaux M, Darche S et al (2015) A novel mouse model for stable engraftment of a human immune system and human hepatocytes. PLoS One 10(3):e0119820. doi:10.1371/journal.pone.0119820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Montagnier L (2010) 25 years after HIV discovery: prospects for cure and vaccine. Virology 397(2):248–254. doi:10.1016/j.virol.2009.10.045

    Article  CAS  PubMed  Google Scholar 

  151. Hsiung GD (1987) Perspectives on retroviruses and the etiologic agent of AIDS. Yale J Biol Med 60(6):505–514

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Collaborators GH, Wang H, Wolock TM et al (2016) Estimates of global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2015: the global burden of disease study 2015. Lancet HIV 3(8):e361–e387. doi:10.1016/S2352-3018(16)30087-X

    Article  Google Scholar 

  153. Owen A, Rannard S (2016) Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: insights for applications in HIV therapy. Adv Drug Deliv Rev 103:144–156. doi:10.1016/j.addr.2016.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rahman SM, Vaidya NK, Zou X (2016) Impact of early treatment programs on HIV epidemics: an immunity-based mathematical model. Math Biosci 280:38–49. doi:10.1016/j.mbs.2016.07.009

    Article  PubMed  Google Scholar 

  155. Wainberg MA, Zaharatos GJ, Brenner BG (2011) Development of antiretroviral drug resistance. N Engl J Med 365(7):637–646. doi:10.1056/NEJMra1004180

    Article  CAS  PubMed  Google Scholar 

  156. Okoye AA, Picker LJ (2013) CD4(+) T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol Rev 254(1):54–64. doi:10.1111/imr.12066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Denton PW, Garcia JV (2011) Humanized mouse models of HIV infection. AIDS Rev 13(3):135–148

    PubMed  PubMed Central  Google Scholar 

  158. Koka PS, Fraser JK, Bryson Y et al (1998) Human immunodeficiency virus inhibits multilineage hematopoiesis in vivo. J Virol 72(6):5121–5127

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Mosier DE, Gulizia RJ, MacIsaac PD et al (1993) Resistance to human immunodeficiency virus 1 infection of SCID mice reconstituted with peripheral blood leukocytes from donors vaccinated with vaccinia gp160 and recombinant gp160. Proc Natl Acad Sci U S A 90(6):2443–2447

    Article  CAS  Google Scholar 

  160. Gauduin MC, Parren PW, Weir R et al (1997) Passive immunization with a human monoclonal antibody protects hu-PBL-SCID mice against challenge by primary isolates of HIV-1. Nat Med 3(12):1389–1393

    Article  CAS  Google Scholar 

  161. Parren PW, Ditzel HJ, Gulizia RJ et al (1995) Protection against HIV-1 infection in hu-PBL-SCID mice by passive immunization with a neutralizing human monoclonal antibody against the gp120 CD4-binding site. AIDS 9(6):F1–F6

    Article  CAS  Google Scholar 

  162. van Kuyk R, Torbett BE, Gulizia RJ et al (1994) Cloned human CD8+ cytotoxic T lymphocytes protect human peripheral blood leukocyte-severe combined immunodeficient mice from HIV-1 infection by an HLA-unrestricted mechanism. J Immunol 153(10):4826–4833

    PubMed  Google Scholar 

  163. Denton PW, Garcia JV (2009) Novel humanized murine models for HIV research. Curr HIV/AIDS Rep 6(1):13–19

    Article  Google Scholar 

  164. Bonyhadi ML, Rabin L, Salimi S et al (1993) HIV induces thymus depletion in vivo. Nature 363(6431):728–732. doi:10.1038/363728a0

    Article  CAS  PubMed  Google Scholar 

  165. Stoddart CA, Bales CA, Bare JC et al (2007) Validation of the SCID-hu thy/liv mouse model with four classes of licensed antiretrovirals. PLoS One 2(7):e655. doi:10.1371/journal.pone.0000655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Policicchio BB, Pandrea I, Apetrei C (2016) Animal models for HIV cure research. Front Immunol 7:12. doi:10.3389/fimmu.2016.00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Brooks DG, Kitchen SG, Kitchen CM et al (2001) Generation of HIV latency during thymopoiesis. Nat Med 7(4):459–464. doi:10.1038/86531

    Article  CAS  PubMed  Google Scholar 

  168. Brooks DG, Hamer DH, Arlen PA et al (2003) Molecular characterization, reactivation, and depletion of latent HIV. Immunity 19(3):413–423

    Article  CAS  Google Scholar 

  169. Korin YD, Brooks DG, Brown S et al (2002) Effects of prostratin on T-cell activation and human immunodeficiency virus latency. J Virol 76(16):8118–8123

    Article  CAS  Google Scholar 

  170. Berges BK, Rowan MR (2011) The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment. Retrovirology 8:65. doi:10.1186/1742-4690-8-65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hofer U, Baenziger S, Heikenwalder M et al (2008) RAG2−/− gamma(c)−/− mice transplanted with CD34+ cells from human cord blood show low levels of intestinal engraftment and are resistant to rectal transmission of human immunodeficiency virus. J Virol 82(24):12145–12153. doi:10.1128/JVI.01105-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Akkina R, Berges BK, Palmer BE et al (2011) Humanized Rag1−/− gammac−/− mice support multilineage hematopoiesis and are susceptible to HIV-1 infection via systemic and vaginal routes. PLoS One 6(6):e20169. doi:10.1371/journal.pone.0020169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Choudhary SK, Archin NM, Cheema M et al (2012) Latent HIV-1 infection of resting CD4(+) T cells in the humanized Rag2(−)/(−) gammac(−)/(−) mouse. J Virol 86(1):114–120. doi:10.1128/JVI.05590-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Holt N, Wang J, Kim K et al (2010) Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28(8):839–847. doi:10.1038/nbt.1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Halper-Stromberg A, Lu CL, Klein F et al (2014) Broadly neutralizing antibodies and viral inducers decrease rebound from HIV-1 latent reservoirs in humanized mice. Cell 158(5):989–999. doi:10.1016/j.cell.2014.07.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kirchhoff F (2008) Silencing HIV-1 in vivo. Cell 134(4):566–568. doi:10.1016/j.cell.2008.08.004

    Article  CAS  PubMed  Google Scholar 

  177. Kumar P, Ban HS, Kim SS et al (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134(4):577–586. doi:10.1016/j.cell.2008.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sun Z, Denton PW, Estes JD et al (2007) Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med 204(4):705–714. doi:10.1084/jem.20062411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Olesen R, Wahl A, Denton PW et al (2011) Immune reconstitution of the female reproductive tract of humanized BLT mice and their susceptibility to human immunodeficiency virus infection. J Reprod Immunol 88(2):195–203. doi:10.1016/j.jri.2010.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Watkins RL, Foster JL, Garcia JV (2015) In vivo analysis of Nef's role in HIV-1 replication, systemic T cell activation and CD4(+) T cell loss. Retrovirology 12:61. doi:10.1186/s12977-015-0187-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Denton PW, Long JM, Wietgrefe SW et al (2014) Targeted cytotoxic therapy kills persisting HIV infected cells during ART. PLoS Pathog 10(1):e1003872. doi:10.1371/journal.ppat.1003872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shimizu S, Ringpis GE, Marsden MD et al (2015) RNAi-mediated CCR5 knockdown provides HIV-1 resistance to memory T cells in humanized BLT mice. Mol Ther Nucleic Acids e227:4. doi:10.1038/mtna.2015.3

    Article  CAS  Google Scholar 

  183. Martin JL, Maldonado JO, Mueller JD et al (2016) Molecular studies of HTLV-1 replication: an update. Virus 8(2). doi:10.3390/v8020031

    Article  Google Scholar 

  184. Goncalves DU, Proietti FA, Ribas JG et al (2010) Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases. Clin Microbiol Rev 23(3):577–589. doi:10.1128/CMR.00063-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Manel N, Battini JL, Taylor N et al (2005) HTLV-1 tropism and envelope receptor. Oncogene 24(39):6016–6025. doi:10.1038/sj.onc.1208972

    Article  CAS  PubMed  Google Scholar 

  186. Azran I, Schavinsky-Khrapunsky Y, Aboud M (2004) Role of tax protein in human T-cell leukemia virus type-I leukemogenicity. Retrovirology 1:20. doi:10.1186/1742-4690-1-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tezuka K, Xun R, Tei M et al (2014) An animal model of adult T-cell leukemia: humanized mice with HTLV-1-specific immunity. Blood 123(3):346–355. doi:10.1182/blood-2013-06-508861

    Article  CAS  PubMed  Google Scholar 

  188. Feuer G, Zack JA, Harrington WJ Jr et al (1993) Establishment of human T-cell leukemia virus type I T-cell lymphomas in severe combined immunodeficient mice. Blood 82(3):722–731

    CAS  PubMed  Google Scholar 

  189. Kondo A, Imada K, Hattori T et al (1993) A model of in vivo cell proliferation of adult T-cell leukemia. Blood 82(8):2501–2509

    CAS  PubMed  Google Scholar 

  190. Van Duyne R, Pedati C, Guendel I et al (2009) The utilization of humanized mouse models for the study of human retroviral infections. Retrovirology 6:76. doi:10.1186/1742-4690-6-76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Miyazato P, Yasunaga J, Taniguchi Y et al (2006) De novo human T-cell leukemia virus type 1 infection of human lymphocytes in NOD-SCID, common gamma-chain knockout mice. J Virol 80(21):10683–10691. doi:10.1128/JVI.01009-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Takajo I, Umeki K, Morishita K et al (2007) Engraftment of peripheral blood mononuclear cells from human T-lymphotropic virus type 1 carriers in NOD/SCID/gammac(null) (NOG) mice. Int J Cancer 121(10):2205–2211. doi:10.1002/ijc.22972

    Article  CAS  PubMed  Google Scholar 

  193. Panfil AR, Al-Saleem JJ, Green PL (2013) Animal models utilized in HTLV-1 research. Virology (Auckl) 4:49–59. doi:10.4137/VRT.S12140

    Article  Google Scholar 

  194. Villaudy J, Wencker M, Gadot N et al (2011) HTLV-1 propels thymic human T cell development in “human immune system” Rag2(−)/(−) gamma c(−)/(−) mice. PLoS Pathog 7(9):e1002231. doi:10.1371/journal.ppat.1002231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Martin F, Bangham CR, Ciminale V et al (2011) Conference highlights of the 15th international conference on human retrovirology: HTLV and related retroviruses, 4-8 June 2011, Leuven, Gembloux, Belgium. Retrovirology 8:86. doi:10.1186/1742-4690-8-86

    Article  PubMed  PubMed Central  Google Scholar 

  196. Tezuka K, Xun R, Tei M et al (2011) Inverse correlation between tax and CD25 expressions in HTLV-1 infected CD4 T-cells in vivo. Retrovirology 8(1):1–1. doi:10.1186/1742-4690-8-s1-a14

    Article  Google Scholar 

  197. Peres E, Bagdassarian E, This S et al (2015) From immunodeficiency to humanization: the contribution of mouse models to explore HTLV-1 Leukemogenesis. Virus 7(12):6371–6386. doi:10.3390/v7122944

    Article  CAS  Google Scholar 

  198. Feuer G, Fraser JK, Zack JA et al (1996) Human T-cell leukemia virus infection of human hematopoietic progenitor cells: maintenance of virus infection during differentiation in vitro and in vivo. J Virol 70(6):4038–4044

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Saito M, Tanaka R, Fujii H et al (2014) The neutralizing function of the anti-HTLV-1 antibody is essential in preventing in vivo transmission of HTLV-1 to human T cells in NOD-SCID/gammacnull (NOG) mice. Retrovirology 11:74. doi:10.1186/s12977-014-0074-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hiyoshi M, Okuma K, Tateyama S et al (2015) Furin-dependent CCL17-fused recombinant toxin controls HTLV-1 infection by targeting and eliminating infected CCR4-expressing cells in vitro and in vivo. Retrovirology 12:73. doi:10.1186/s12977-015-0199-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Ashkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Vahedi, F., Giles, E.C., Ashkar, A.A. (2017). The Application of Humanized Mouse Models for the Study of Human Exclusive Viruses. In: Mossman, K. (eds) Innate Antiviral Immunity. Methods in Molecular Biology, vol 1656. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7237-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7237-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7236-4

  • Online ISBN: 978-1-4939-7237-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics