Skip to main content

Re-expressing Epigenetically Silenced Genes by Inducing DNA Demethylation Through Targeting of Ten-Eleven Translocation 2 to Any Given Genomic Locus

  • Protocol
  • First Online:
Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1654))

Abstract

Epigenetic editing is a novel methodology to modify the epigenetic landscape of any genomic location. As such, the approach might reprogram expression profiles, without altering the DNA sequence. Epigenetic alterations, including promoter hypermethylation, are associated with an increasing number of human diseases. To exploit this situation, epigenetic editing rises as a new alternative to specifically demethylate abnormally hypermethylated regions. Here, we describe a methodology to actively demethylate the hypermethylated ICAM-1 promoter. Reducing DNA methylation in our target region increased the expression of the ICAM-1 gene. As the ICAM-1 gene in our cell lines was highly methylated (up to 80%), this approach proves a robust manner to reduce methylation for hypermethylated regions. Epigenetic editing therefore not only provides an approach to address mechanisms of gene expression regulation, but also adds to the therapeutic toolbox as current inhibitors of epigenetic enzymes are limited by genome-wide effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu C, Morris JR (2001) Genes, genetics, and epigenetics: a correspondence. Science 293:1103–1105

    Article  CAS  Google Scholar 

  2. Fu Y, He C (2012) Nucleic acid modifications with epigenetic significance. Curr Opin Chem Biol 16:516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Suzuki Y, Korlach J, Turner SW, Tsukahara T, Taniguchi J, Qu W, Ichikawa K et al (2016) AgIn: measuring the landscape of CpG methylation of individual repetitive elements. Bioinformatics 32:2911–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA et al (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38:626–635

    Article  CAS  PubMed  Google Scholar 

  5. Kornblihtt AR (2006) Chromatin, transcript elongation and alternative splicing. Nat Struct Mol Biol 13:5–7

    Article  CAS  PubMed  Google Scholar 

  6. Aguilar JL, Montes A, Montero A, Vidal F, F-Llamazares J, Pastor C (1992) Continuous pleural infusion of bupivacaine offers better postoperative pain relief than does bolus administration. Reg Anesth 17:12–14

    CAS  PubMed  Google Scholar 

  7. Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103:1412–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Smet C, Lurquin C, Lethe B, Martelange V, Boon T (1999) DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19:7327–7335

    Article  PubMed  PubMed Central  Google Scholar 

  9. Edwards CA, Ferguson-Smith AC (2007) Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol 19:281–289

    Article  CAS  PubMed  Google Scholar 

  10. Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S, Shu J et al (2007) Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet 3:2023–2036

    Article  CAS  PubMed  Google Scholar 

  11. Buck-Koehntop BA, Defossez PA (2013) On how mammalian transcription factors recognize methylated DNA. Epigenetics 8:131–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boyes J, Bird A (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64:1123–1134

    Article  CAS  PubMed  Google Scholar 

  13. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, Rots MG et al (2013) Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 425:479–491

    Article  CAS  PubMed  Google Scholar 

  18. Rivenbark AG, Stolzenburg S, Beltran AS, Yuan X, Rots MG, Strahl BD, Blancafort P (2012) Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 7:350–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Falahi F, Huisman C, Kazemier HG, van der Vlies P, Kok K, Hospers GA, Rots MG (2013) Towards sustained silencing of HER2/neu in cancer by epigenetic editing. Mol Cancer Res 11:1029–1039

    Article  CAS  PubMed  Google Scholar 

  20. de Groote ML, Verschure PJ, Rots MG (2012) Epigenetic editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 40:10596–10613

    Article  PubMed  PubMed Central  Google Scholar 

  21. Uil TG, Haisma HJ, Rots MG (2003) Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Res 31:6064–6078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thakore PI, Black JB, Hilton IB, Gersbach CA (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13:127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tost J (2016) Engineering of the epigenome: synthetic biology to define functional causality and develop innovative therapies. Epigenomics 8:153–156

    Article  CAS  PubMed  Google Scholar 

  24. Cano-Rodriguez D, Rots MG (2016) Epigenetic editing: on the verge of reprogramming gene expression at will. Curr Genet Med Rep 4(4):170–179

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sangamo_BioSciences (2016) Sangamo BioSciences, Inc. Therapeutic applications. Hane Chow Inc. http://www.sangamo.com/technology/therapeutic-applications.html

  26. Desjarlais JR, Berg JM (1992) Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc Natl Acad Sci U S A 89:7345–7349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Desjarlais JR, Berg JM (1993) Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci U S A 90:2256–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choo Y, Klug A (1994) Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc Natl Acad Sci U S A 91:11163–11167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Zhang J, Wang R, Guo S, Zhang H, Ma Y, Liu Q et al (2016) Hypermethylation reduces the expression of PNPLA7 in hepatocellular carcinoma. Oncol Lett 12:670–674

    PubMed  PubMed Central  Google Scholar 

  31. Manoochehri M, Borhani N, Karbasi A, Koochaki A, Kazemi B (2016) Promoter hypermethylation and downregulation of the FAS gene may be involved in colorectal carcinogenesis. Oncol Lett 12:285–290

    PubMed  PubMed Central  Google Scholar 

  32. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  CAS  PubMed  Google Scholar 

  33. Yang N, Eijsink JJ, Lendvai A, Volders HH, Klip H, Buikema HJ, van Hemel BM et al (2009) Methylation markers for CCNA1 and C13ORF18 are strongly associated with high-grade cervical intraepithelial neoplasia and cervical cancer in cervical scrapings. Cancer Epidemiol Biomark Prev 18:3000–3007

    Article  CAS  Google Scholar 

  34. Huisman C, Wisman GB, Kazemier HG, van Vugt MA, van der Zee AG, Schuuring E, Rots MG (2013) Functional validation of putative tumor suppressor gene C13ORF18 in cervical cancer by Artificial Transcription Factors. Mol Oncol 7:669–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huisman C, van der Wijst MG, Falahi F, Overkamp J, Karsten G, Terpstra MM, Kok K et al (2015) Prolonged re-expression of the hypermethylated gene EPB41L3 using artificial transcription factors and epigenetic drugs. Epigenetics 10:384–396

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huisman C, van der Wijst MG, Schokker M, Blancafort P, Terpstra MM, Kok K, van der Zee AG et al (2016) Re-expression of selected epigenetically silenced candidate tumor suppressor genes in cervical cancer by TET2-directed demethylation. Mol Ther 24:536–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen H, Kazemier HG, de Groote ML, Ruiters MH, Xu GL, Rots MG (2014) Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res 42:1563–1574

    Article  CAS  PubMed  Google Scholar 

  38. Magnenat L, Blancafort P, Barbas CF 3rd (2004) In vivo selection of combinatorial libraries and designed affinity maturation of polydactyl zinc finger transcription factors for ICAM-1 provides new insights into gene regulation. J Mol Biol 341:635–649

    Article  CAS  PubMed  Google Scholar 

  39. de Groote ML, Kazemier HG, Huisman C, van der Gun BT, Faas MM, Rots MG (2014) Upregulation of endogenous ICAM-1 reduces ovarian cancer cell growth in the absence of immune cells. Int J Cancer 134:280–290

    Article  PubMed  Google Scholar 

  40. Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH et al (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31:1137–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stolzenburg, S., Goubert, D., Rots, M. G. (2016) Rewriting DNA methylation signatures at will: the curable genome within reach? In: Jeltsch A., Jurkowska R. DNA methylation. Springer International Publishing, Switzerland. Adv Exp Med Biol 945:475–490

    Google Scholar 

  42. Segal DJ, Dreier B, Beerli RR, Barbas CF 3rd (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci U S A 96:2758–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dreier B, Beerli RR, Segal DJ, Flippin JD, Barbas CF 3rd (2001) Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 276:29466–29478

    Article  CAS  PubMed  Google Scholar 

  44. Dreier B, Fuller RP, Segal DJ, Lund CV, Blancafort P, Huber A, Koksch B et al (2005) Development of zinc finger domains for recognition of the 5′-CNN-3′ family DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 280:35588–35597

    Article  CAS  PubMed  Google Scholar 

  45. Bae KH, Kwon YD, Shin HC, Hwang MS, Ryu EH, Park KS, Yang HY et al (2003) Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol 21:275–280

    Article  CAS  PubMed  Google Scholar 

  46. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T et al (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu PQ, Rebar EJ, Zhang L, Liu Q, Jamieson AC, Liang Y, Qi H et al (2001) Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J Biol Chem 276:11323–11334

    Article  CAS  PubMed  Google Scholar 

  48. Mandell JG, Barbas CF 3rd (2006) Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 34:W516–W523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Corbi N, Perez M, Maione R, Passananti C (1997) Synthesis of a new zinc finger peptide; comparison of its ‘code’ deduced and ‘CASTing’ derived binding sites. FEBS Lett 417:71–74

    Article  CAS  PubMed  Google Scholar 

  50. Bulyk ML, Huang X, Choo Y, Church GM (2001) Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc Natl Acad Sci U S A 98:7158–7163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meng X, Brodsky MH, Wolfe SA (2005) A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol 23:988–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne G. Rots .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rendón, J.C., Cano-Rodríguez, D., Rots, M.G. (2017). Re-expressing Epigenetically Silenced Genes by Inducing DNA Demethylation Through Targeting of Ten-Eleven Translocation 2 to Any Given Genomic Locus. In: Kaufmann, M., Klinger, C., Savelsbergh, A. (eds) Functional Genomics. Methods in Molecular Biology, vol 1654. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7231-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7231-9_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7230-2

  • Online ISBN: 978-1-4939-7231-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics