Skip to main content

Investigating the Role of the Photorespiratory Pathway in Non-photosynthetic Tissues

  • Protocol
  • First Online:
Photorespiration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1653))

Abstract

Whilst photorespiration represents one of the dominant pathway fluxes in photosynthetic tissues there are hints from publically available gene expression data such as that housed in the bioarray resource (BAR; www.bar.utoronto.ca) that several of the constituent enzymes are present in roots and other heterotrophic tissues. Here we describe a protocol based on modification of the gaseous environment surrounding individual tissues of mutant and wild type Arabidopsis and evaluation of the consequences. This method could additionally easily be used for larger plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauwe H, Hagemann M, Kern R, Timm S (2012) Photorespiration has a dual origin and manifold links to central metabolism. Curr Opin Plant Biol 15(3):269–275

    Article  CAS  PubMed  Google Scholar 

  2. Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J 43(1):153–163

    Article  CAS  PubMed  Google Scholar 

  3. Engel N et al (2011) The presequence of Arabidopsis serine hydroxymethyltransferase SHM2 selectively prevents import into mesophyll mitochondria. Plant Physiol 157(4):1711–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baerenfaller K et al (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320(5878):938–941

    Article  CAS  PubMed  Google Scholar 

  5. Nunes-Nesi A et al (2014) Is there a metabolic requirement for photorespiratory enzyme activities in heterotrophic tissues? Mol Plant 7(1):248–251

    Article  CAS  PubMed  Google Scholar 

  6. Jacoby RP, Millar AH, Taylor NL (2013) Application of selected reaction monitoring mass spectrometry to field-grown crop plants to allow dissection of the molecular mechanisms of abiotic stress tolerance. Front Plant Sci 4:20

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mintz-Oron S et al (2012) Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci U S A 109(1):339–344

    Article  CAS  PubMed  Google Scholar 

  8. Lernmark U, Henricson D, Wigge B, Gardestrom P (1991) Glycine oxidation in mitochondria isolated from light grown and etiolated plant-tissue. Physiol Plant 82(3):339–344

    Article  CAS  Google Scholar 

  9. Igamberdiev AU, Bykova NV, Gardestrom P (1997) Involvement of cyanide-resistant and rotenone-insensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants. FEBS Lett 412(2):265–269

    Article  CAS  PubMed  Google Scholar 

  10. Timm S et al (2013) Serine acts as a metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis(1 W). Plant Physiol 162(1):379–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1(1):387–396

    Article  CAS  PubMed  Google Scholar 

  12. Weckwerth W, Loureiro ME, Wenzel K, Fiehn O (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proc Natl Acad Sci U S A 101(20):7809–7814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roessner-Tunali U et al (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133(1):84–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roessner U, Willmitzer L, Fernie AR (2001) High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol 127(3):749–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schad M, Mungur R, Fiehn O, Kehr J (2005) Metabolic profiling of laser microdissected vascular bundles of Arabidopsis thaliana. Plant Methods 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62(6):887–900

    Article  CAS  PubMed  Google Scholar 

  17. Kopka J et al (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21(8):1635–1638

    Article  CAS  PubMed  Google Scholar 

  18. Schauer N et al (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579(6):1332–1337

    Article  CAS  PubMed  Google Scholar 

  19. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62(6):817–836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Work in the H.B. and A.R.F. laboratories was funded by the DFG Forschergruppe 1186 Promics Photorespiration: Origin and Metabolic Integration in Interacting Compartments. We wish to thank Mrs. Kathrin Jahnke at Rostock University for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisdair R. Fernie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fernie, A.R., Bauwe, H., Sweetlove, L.J. (2017). Investigating the Role of the Photorespiratory Pathway in Non-photosynthetic Tissues. In: Fernie, A., Bauwe, H., Weber, A. (eds) Photorespiration. Methods in Molecular Biology, vol 1653. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7225-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7225-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7224-1

  • Online ISBN: 978-1-4939-7225-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics