Skip to main content

Isotopically Nonstationary Metabolic Flux Analysis (INST-MFA) of Photosynthesis and Photorespiration in Plants

  • Protocol
  • First Online:
Photorespiration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1653))

Abstract

Photorespiration is a central component of photosynthesis; however to better understand its role it should be viewed in the context of an integrated metabolic network rather than a series of individual reactions that operate independently. Isotopically nonstationary 13C metabolic flux analysis (INST-MFA), which is based on transient labeling studies at metabolic steady state, offers a comprehensive platform to quantify plant central metabolism. In this chapter, we describe the application of INST-MFA to investigate metabolism in leaves. Leaves are an autotrophic tissue, assimilating CO2 over a diurnal period implying that the metabolic steady state is limited to less than 12 h and thus requiring an INST-MFA approach. This strategy results in a comprehensive unified description of photorespiration, Calvin cycle, sucrose and starch synthesis, tricarboxylic acid (TCA) cycle, and amino acid biosynthetic fluxes. We present protocols of the experimental aspects for labeling studies: transient 13CO2 labeling of leaf tissue, sample quenching and extraction, mass spectrometry (MS) analysis of isotopic labeling data, measurement of sucrose and amino acids in vascular exudates, and provide details on the computational flux estimation using INST-MFA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45(3):716–722. 0006-291X(71)90475-X [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Ogren WL, Bowes G (1971) Ribulose diphosphate carboxylase regulates soybean photorespiration. Nat New Biol 230(13):159–160

    Article  CAS  PubMed  Google Scholar 

  3. Ogren WL (1984) Photorespiration: pathways, regulation, and modification. Annu Rev Plant Physiol 35(1):415–442. doi:10.1146/annurev.pp.35.060184.002215

    Article  CAS  Google Scholar 

  4. Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47. doi:10.1146/annurev-arplant-042811-105511

    Article  CAS  PubMed  Google Scholar 

  5. Tcherkez GG, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci U S A 103(19):7246–7251. doi:10.1073/pnas.0600605103. 0600605103 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parry MAJ, Madgwick PJ, Carvalho JFC, Andralojc PJ (2007) Paper presented at international workshop on increasing wheat yield potential, CIMMYT, Obregon, Mexico, 20–24 Mar 2006. Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. J Agric Sci 145(01):31–43. doi:10.1017/S0021859606006666

    Article  CAS  Google Scholar 

  7. Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15(6):330–336. doi:10.1016/j.tplants.2010.03.006. S1360-1385(10)00062-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Bauwe H, Hagemann M, Kern R, Timm S (2012) Photorespiration has a dual origin and manifold links to central metabolism. Curr Opin Plant Biol 15(3):269–275. doi:10.1016/j.pbi.2012.01.008. S1369-5266(12)00009-X [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Servaites JC (1977) Chemical inhibition of the glycolate pathway in soybean leaf cells. Plant Physiol 60(4):461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wingler A, Lea PJ, Leegood RC (1997) Control of photosynthesis in barley plants with reduced activities of glycine decarboxylase. Planta 202(2):171–178

    Article  CAS  Google Scholar 

  11. Heineke D, Bykova N, Gardestrom P, Bauwe H (2001) Metabolic response of potato plants to an antisense reduction of the P-protein of glycine decarboxylase. Planta 212(5–6):880–887

    Article  CAS  PubMed  Google Scholar 

  12. Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci U S A 101(31):11506–11510. doi:10.1073/pnas.0404388101. 0404388101 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tcherkez G, Bligny R, Gout E, Mahe A, Hodges M, Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci U S A 105(2):797–802. doi:10.1073/pnas.0708947105. 0708947105 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plant 73(1):147–152. doi:10.1111/j.1399-3054.1988.tb09205.x

    Article  CAS  Google Scholar 

  15. Busch FA (2013) Current methods for estimating the rate of photorespiration in leaves. Plant Biol (Stuttg) 15(4):648–655. doi:10.1111/j.1438-8677.2012.00694.x

    Article  CAS  Google Scholar 

  16. Dandekar T, Fieselmann A, Majeed S, Ahmed Z (2014) Software applications toward quantitative metabolic flux analysis and modeling. Brief Bioinform 15(1):91–107. doi:10.1093/bib/bbs065. bbs065 [pii]

    Article  PubMed  Google Scholar 

  17. Young JD (2014) INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 30(9):1333–1335. doi:10.1093/bioinformatics/btu015. btu015 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kajihata S, Furusawa C, Matsuda F, Shimizu H (2014) OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis. Biomed Res Int 2014:627014. doi:10.1155/2014/627014

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yuan J, Fowler WU, Kimball E, Lu W, Rabinowitz JD (2006) Kinetic flux profiling of nitrogen assimilation in Escherichia coli. Nat Chem Biol 2(10):529–530. doi:10.1038/nchembio816. nchembio816 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Yuan J, Bennett BD, Rabinowitz JD (2008) Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat Protoc 3(8):1328–1340. doi:10.1038/nprot.2008.131. nprot.2008.131 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Szecowka M, Heise R, Tohge T, Nunes-Nesi A, Vosloh D, Huege J, Feil R, Lunn J, Nikoloski Z, Stitt M, Fernie AR, Arrivault S (2013) Metabolic fluxes in an illuminated Arabidopsis rosette. Plant Cell 25(2):694–714. doi:10.1105/tpc.112.106989. tpc.112.106989 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9(1):68–86. doi:10.1016/j.ymben.2006.09.001. S1096-7176(06)00084-X [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99(3):686–699. doi:10.1002/bit.21632

    Article  CAS  PubMed  Google Scholar 

  24. Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab Eng 13(6):656–665. doi:10.1016/j.ymben.2011.08.002. S1096-7176(11)00088-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Adebiyi AO, Jazmin LJ, Young JD (2015) 13C flux analysis of cyanobacterial metabolism. Photosynth Res 126(1):19–32. doi:10.1007/s11120-014-0045-1

    Article  CAS  PubMed  Google Scholar 

  26. Xiong W, Lee TC, Rommelfanger S, Gjersing E, Cano M, Maness PC, Ghirardi M, Yu J (2015) Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria. Nat Plants 2:15187. doi:10.1038/nplants.2015.187. nplants2015187 [pii]

    Article  PubMed  Google Scholar 

  27. Wu C, Xiong W, Dai J, Wu Q (2015) Genome-based metabolic mapping and 13C flux analysis reveal systematic properties of an oleaginous microalga Chlorella protothecoides. Plant Physiol 167(2):586–599. doi:10.1104/pp.114.250688. pp.114.250688 [pii]

    Article  CAS  PubMed  Google Scholar 

  28. Ma F, Jazmin LJ, Young JD, Allen DK (2014) Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proc Natl Acad Sci U S A 111(47):16967–16972. doi:10.1073/pnas.1319485111. 1319485111 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Allen DK, Laclair RW, Ohlrogge JB, Shachar-Hill Y (2012) Isotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments. Plant Cell Environ 35(7):1232–1244. doi:10.1111/j.1365-3040.2012.02485.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mandy DE, Goldford JE, Yang H, Allen DK, Libourel IG (2014) Metabolic flux analysis using (1)(3)C peptide label measurements. Plant J 77(3):476–486. doi:10.1111/tpj.12390

    Article  CAS  PubMed  Google Scholar 

  32. Allen DK, Goldford J, Gierse JK, Mandy D, Diepenbrock C, Libourel IG (2014) Quantification of peptide m/z distributions from 13C-labeled cultures with high-resolution mass spectrometry. Anal Chem 86(3):1894–1901. doi:10.1021/ac403985w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Allen DK, Evans BS, Libourel IG (2014) Analysis of isotopic labeling in peptide fragments by tandem mass spectrometry. PLoS One 9(3):e91537. doi:10.1371/journal.pone.0091537. PONE-D-13-05119 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  34. Allen DK, Shachar-Hill Y, Ohlrogge JB (2007) Compartment-specific labeling information in 13C metabolic flux analysis of plants. Phytochemistry 68(16–18):2197–2210. doi:10.1016/j.phytochem.2007.04.010. S0031-9422(07)00246-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  35. Lonien J, Schwender J (2009) Analysis of metabolic flux phenotypes for two Arabidopsis mutants with severe impairment in seed storage lipid synthesis. Plant Physiol 151(3):1617–1634. doi:10.1104/pp.109.144121. pp.109.144121 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sriram G, Iyer VV, Bruce Fulton D, Shanks JV (2007) Identification of hexose hydrolysis products in metabolic flux analytes: a case study of levulinic acid in plant protein hydrolysate. Metab Eng 9(5–6):442–451. doi:10.1016/j.ymben.2007.07.003. S1096-7176(07)00045-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  37. Dulmage AL, Mendelsohn NS (1958) Coverings of bipartite graphs. Can J Math 10:517–534

    Article  Google Scholar 

  38. Pothen A, Fan C-J (1990) Computing the block triangular form of a sparse matrix. ACM Trans Math Softw 16(4):303–324. doi:10.1145/98267.98287

    Article  Google Scholar 

  39. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8(4):324–337. doi:10.1016/j.ymben.2006.01.004. S1096-7176(06)00006-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  40. Rohn H, Hartmann A, Junker A, Junker BH, Schreiber F (2012) FluxMap: a VANTED add-on for the visual exploration of flux distributions in biological networks. BMC Syst Biol 6:33. doi:10.1186/1752-0509-6-33. 1752-0509-6-33 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  41. Droste P, Miebach S, Niedenführ S, Wiechert W, Nöh K (2011) Visualizing multi-omics data in metabolic networks with the software Omix—a case study. Biosystems 105(2):154–161. doi:10.1016/j.biosystems.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  42. Konig M, Holzhutter HG (2010) Fluxviz – Cytoscape plug-in for visualization of flux distributions in networks. Genome Inform 24:96–103. 9781848166585_0008 [pii]

    PubMed  Google Scholar 

  43. Rocha I, Maia P, Evangelista P, Vilaca P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45. doi:10.1186/1752-0509-4-45. 1752-0509-4-45 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  44. King ZA, Drager A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BO (2015) Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput Biol 11(8):e1004321. doi:10.1371/journal.pcbi.1004321. PCOMPBIOL-D-15-00439 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Any product or trademark mentioned here does not imply a warranty, guarantee, or endorsement by the authors or their affiliations over other suitable alternatives. Mass spectrometry methods were developed using instrumentation in part supported by National Science Foundation grants (DBI-1427621 and DBI-0521250 for acquisition of QTRAP LC-MS/MS instruments). We acknowledge support from the Department of Energy (DE-AR0000202) to F.M. and D.K.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doug K. Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ma, F., Jazmin, L.J., Young, J.D., Allen, D.K. (2017). Isotopically Nonstationary Metabolic Flux Analysis (INST-MFA) of Photosynthesis and Photorespiration in Plants. In: Fernie, A., Bauwe, H., Weber, A. (eds) Photorespiration. Methods in Molecular Biology, vol 1653. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7225-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7225-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7224-1

  • Online ISBN: 978-1-4939-7225-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics